140 resultados para Alveolar dose
Resumo:
The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.
Resumo:
Although the Monte Carlo (MC) method allows accurate dose calculation for proton radiotherapy, its usage is limited due to long computing time. In order to gain efficiency, a new macro MC (MMC) technique for proton dose calculations has been developed. The basic principle of the MMC transport is a local to global MC approach. The local simulations using GEANT4 consist of mono-energetic proton pencil beams impinging perpendicularly on slabs of different thicknesses and different materials (water, air, lung, adipose, muscle, spongiosa, cortical bone). During the local simulation multiple scattering, ionization as well as elastic and inelastic interactions have been taken into account and the physical characteristics such as lateral displacement, direction distributions and energy loss have been scored for primary and secondary particles. The scored data from appropriate slabs is then used for the stepwise transport of the protons in the MMC simulation while calculating the energy loss along the path between entrance and exit position. Additionally, based on local simulations the radiation transport of neutrons and the generated ions are included into the MMC simulations for the dose calculations. In order to validate the MMC transport, calculated dose distributions using the MMC transport and GEANT4 have been compared for different mono-energetic proton pencil beams impinging on different phantoms including homogeneous and inhomogeneous situations as well as on a patient CT scan. The agreement of calculated integral depth dose curves is better than 1% or 1 mm for all pencil beams and phantoms considered. For the dose profiles the agreement is within 1% or 1 mm in all phantoms for all energies and depths. The comparison of the dose distribution calculated using either GEANT4 or MMC in the patient also shows an agreement of within 1% or 1 mm. The efficiency of MMC is up to 200 times higher than for GEANT4. The very good level of agreement in the dose comparisons demonstrate that the newly developed MMC transport results in very accurate and efficient dose calculations for proton beams.
Resumo:
Cannabinoids exert neuroprotective and symptomatic effects in amyotrophic lateral sclerosis (ALS). We assessed the pharmacokinetics (PK) and tolerability of delta-9-tetrahydrocannabinol (THC) in ALS patients.
Resumo:
To quantify the dose of pancuronium required to obtain moderate neuromuscular blockade as monitored by acceleromyography (NMB(mod) : train-of-four count of ≤2) as a part of a balanced anaesthetic protocol in pigs used in cardiovascular research.
Resumo:
A case is presented of extensive alveolar bone grafting in a patient with bilateral cleft lip and palate and polyostotic fibrous dysplasia. The patient previously underwent bisphosphonate therapy. Because of an abnormal and often decreased bone turnover caused by the fibrous dysplasia and the bisphosphonate therapy, bone grafting in such a patient poses several potential difficulties. In addition, the histomorphometric analysis of the bone grafts showed markedly decreased bone turnover. However, alveolar bone grafting using the iliac crest was performed successfully. Sufficient occlusion was achieved by postoperative low-loading orthodontic treatment.
Resumo:
To assess the ability of low-dose CT to detect and characterize the most common CT patterns of pulmonary disease.
Resumo:
To determine sirolimus steady-state pharmacokinetics, and to assess the relationship between time-normalized trough sirolimus concentration (C(min,TN)) and evidence of efficacy (rejection and death) and adverse reactions (stomatitis and pneumonia) in liver allograft patients.
Resumo:
To evaluate the antibiotic treatment regime in patients with indwelling JJ stents, the benefits and disadvantages of a peri-interventional antibiotic prophylaxis were compared with those of a continuous low-dose antibiotic treatment in a prospective randomised trial.
Resumo:
There is no consensus regarding optimal dosing of high dose methotrexate (HDMTX) in patients with primary CNS lymphoma. Our aim was to develop a convenient dosing algorithm to target AUC(MTX) in the range between 1000 and 1100 µmol l(-1) h.
Resumo:
Oral iron substitution has shown to be insufficient for treatment of severe iron deficiency anemia in pregnancy. Ferric carboxymaltose is a new intravenous (i.v.) iron formulation promising to be more effective and as safe as iron sucrose. We aimed to assess side effects and tolerance of ferric carboxymaltose compared to i.v. iron sucrose in pregnant women.
Resumo:
The purpose of this study is to compare the safety and efficacy of intravenous (IV) high-dose iron carboxymaltose (ICM) with iron sucrose (IS) for the treatment of postpartum anemia.