130 resultados para Adverse drug reactions or ADR
Resumo:
Drug-induced hypersensitivity reactions are instructive examples of immune reactions against low molecular weight compounds. Classically, such reactions have been explained by the hapten concept, according to which the small antigen covalently modifies an endogenous protein; recent studies show strong associations of several HLA molecules with hypersensitivity. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the major histocompatibility complex (MHC)-peptide complex in order to trigger an immune response. Rather, some drugs may bind reversibly to the MHC or possibly to the T-cell receptor (TCR), eliciting immune reactions akin to the pharmacological activation of other receptors. While the exact mechanism is still a matter of debate, noncovalent drug presentation clearly leads to the activation of drug-specific T cells. In some patients with hypersensitivity, such a response may occur within hours of even the first exposure to the drug. Thus, the reaction to the drug may not be the result of a classical, primary response but rather be mediated by existing, preactivated T cells that display cross-reactivity for the drug and have additional (peptide) specificity as well. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the idiosyncratic nature of many drug hypersensitivity reactions.
Resumo:
BACKGROUND The purpose of patient information leaflets (PILs) is to inform patients about the administration, precautions and potential side effects of their prescribed medication. Despite European Commission guidelines aiming at increasing readability and comprehension of PILs little is known about the potential risk information has on patients. This article explores patients' reactions and subsequent behavior towards risk information conveyed in PILs of commonly prescribed drugs by general practitioners (GPs) for the treatment of Type 2 diabetes, hypertension or hypercholesterolemia; the most frequent cause for consultations in family practices in Germany. METHODS We conducted six focus groups comprising 35 patients which were recruited in GP practices. Transcripts were read and coded for themes; categories were created by abstracting data and further refined into a coding framework. RESULTS Three interrelated categories are presented: (i) The vast amount of side effects and drug interactions commonly described in PILs provoke various emotional reactions in patients which (ii) lead to specific patient behavior of which (iii) consulting the GP for assistance is among the most common. Findings show that current description of potential risk information caused feelings of fear and anxiety in the reader resulting in undesirable behavioral reactions. CONCLUSIONS Future PILs need to convey potential risk information in a language that is less frightening while retaining the information content required to make informed decisions about the prescribed medication. Thus, during the production process greater emphasis needs to be placed on testing the degree of emotional arousal provoked in patients when reading risk information to allow them to undertake a benefit-risk-assessment of their medication that is based on rational rather than emotional (fearful) reactions.
Resumo:
Allopurinol (ALP) hypersensitivity is a major cause of severe cutaneous adverse reactions and is strongly associated with the HLA-B*58:01 allele. However, it can occur in the absence of this allele with identical clinical manifestations. The immune mechanism of ALP-induced severe cutaneous adverse reactions is poorly understood, and the T cell-reactivity pattern in patients with or without the HLA-B*58:01 allele is not known. To understand the interactions among the drug, HLA, and TCR, we generated T cell lines that react to ALP or its metabolite oxypurinol (OXP) from HLA-B*58:01(+) and HLA-B*58:01(-) donors and assessed their reactivity. ALP/OXP-specific T cells reacted immediately to the addition of the drugs and bypassed intracellular Ag processing, which is consistent with the "pharmacological interaction with immune receptors" (p-i) concept. This direct activation occurred regardless of HLA-B*58:01 status. Although most OXP-specific T cells from HLA-B*58:01(+) donors were restricted by the HLA-B*58:01 molecule for drug recognition, ALP-specific T cells also were restricted to other MHC class I molecules. This can be explained by in silico docking data that suggest that OXP binds to the peptide-binding groove of HLA-B*58:01 with higher affinity. The ensuing T cell responses elicited by ALP or OXP were not limited to particular TCR Vβ repertoires. We conclude that the drug-specific T cells are activated by OXP bound to HLA-B*58:01 through the p-i mechanism.
Resumo:
The long-term risk associated with different coronary artery disease (CAD) presentations in women undergoing percutaneous coronary intervention (PCI) with drug-eluting stents (DES) is poorly characterized. We pooled patient-level data for women enrolled in 26 randomized clinical trials. Of 11,577 women included in the pooled database, 10,133 with known clinical presentation received a DES. Of them, 5,760 (57%) had stable angina pectoris (SAP), 3,594 (35%) had unstable angina pectoris (UAP) or non-ST-segment-elevation myocardial infarction (NSTEMI), and 779 (8%) had ST-segment-elevation myocardial infarction (STEMI) as clinical presentation. A stepwise increase in 3-year crude cumulative mortality was observed in the transition from SAP to STEMI (4.9% vs 6.1% vs 9.4%; p <0.01). Conversely, no differences in crude mortality rates were observed between 1 and 3 years across clinical presentations. After multivariable adjustment, STEMI was independently associated with greater risk of 3-year mortality (hazard ratio [HR] 3.45; 95% confidence interval [CI] 1.99 to 5.98; p <0.01), whereas no differences were observed between UAP or NSTEMI and SAP (HR 0.99; 95% CI 0.73 to 1.34; p = 0.94). In women with ACS, use of new-generation DES was associated with reduced risk of major adverse cardiac events (HR 0.58; 95% CI 0.34 to 0.98). The magnitude and direction of the effect with new-generation DES was uniform between women with or without ACS (pinteraction = 0.66). In conclusion, in women across the clinical spectrum of CAD, STEMI was associated with a greater risk of long-term mortality. Conversely, the adjusted risk of mortality between UAP or NSTEMI and SAP was similar. New-generation DESs provide improved long-term clinical outcomes irrespective of the clinical presentation in women.
Resumo:
IMPORTANCE Despite antirestenotic efficacy of coronary drug-eluting stents (DES) compared with bare metal stents (BMS), the relative risk of stent thrombosis and adverse cardiovascular events is unclear. Although dual antiplatelet therapy (DAPT) beyond 1 year provides ischemic event protection after DES, ischemic event risk is perceived to be less after BMS, and the appropriate duration of DAPT after BMS is unknown. OBJECTIVE To compare (1) rates of stent thrombosis and major adverse cardiac and cerebrovascular events (MACCE; composite of death, myocardial infarction, or stroke) after 30 vs 12 months of thienopyridine in patients treated with BMS taking aspirin and (2) treatment duration effect within the combined cohorts of randomized patients treated with DES or BMS as prespecified secondary analyses. DESIGN, SETTING, AND PARTICIPANTS International, multicenter, randomized, double-blinded, placebo-controlled trial comparing extended (30-months) thienopyridine vs placebo in patients taking aspirin who completed 12 months of DAPT without bleeding or ischemic events after receiving stents. The study was initiated in August 2009 with the last follow-up visit in May 2014. INTERVENTIONS Continued thienopyridine or placebo at months 12 through 30 after stent placement, in 11,648 randomized patients treated with aspirin, of whom 1687 received BMS and 9961 DES. MAIN OUTCOMES AND MEASURES Stent thrombosis, MACCE, and moderate or severe bleeding. RESULTS Among 1687 patients treated with BMS who were randomized to continued thienopyridine vs placebo, rates of stent thrombosis were 0.5% vs 1.11% (n = 4 vs 9; hazard ratio [HR], 0.49; 95% CI, 0.15-1.64; P = .24), rates of MACCE were 4.04% vs 4.69% (n = 33 vs 38; HR, 0.92; 95% CI, 0.57-1.47; P = .72), and rates of moderate/severe bleeding were 2.03% vs 0.90% (n = 16 vs 7; P = .07), respectively. Among all 11,648 randomized patients (both BMS and DES), stent thrombosis rates were 0.41% vs 1.32% (n = 23 vs 74; HR, 0.31; 95% CI, 0.19-0.50; P < .001), rates of MACCE were 4.29% vs 5.74% (n = 244 vs 323; HR, 0.73; 95% CI, 0.62-0.87; P < .001), and rates of moderate/severe bleeding were 2.45% vs 1.47% (n = 135 vs 80; P < .001). CONCLUSIONS AND RELEVANCE Among patients undergoing coronary stent placement with BMS and who tolerated 12 months of thienopyridine, continuing thienopyridine for an additional 18 months compared with placebo did not result in statistically significant differences in rates of stent thrombosis, MACCE, or moderate or severe bleeding. However, the BMS subset may have been underpowered to identify such differences, and further trials are suggested. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00977938.
Resumo:
The improvement and performance of a micellar electrokinetic capillary chromatography assay for cefepime in human serum and plasma with a 50 μm id fused-silica capillary elongated from 40 to 60 cm is reported. Sample preparation with dodecylsulfate protein precipitation at pH 4.5, the pH 9.1 separation medium and the applied voltage were as reported previously[16]. The change resulted in a significant lower current, higher resolution and increased detection time intervals. The performance of the assay with multi-level internal calibration was assessed with calibration and control samples. Quality assurance data of a two year period assessed under the new conditions demonstrated the robustness of the assay. In serum samples of patients who received both cefepime and sulfamethoxazole, cefepime could not be detected due to the inseparability of the two compounds. The presence of an interference can be recognized by an increased peak width (width > 0.2 min), the appearance of a shoulder or an unresolved double peak. The patient data gathered during a three year period reveal that introduction of therapeutic drug monitoring led to a 50% reduction of the median drug level. The data suggest that therapeutic drug monitoring can help to minimize the risk of major adverse reactions and to increase drug safety on an individual basis. This article is protected by copyright. All rights reserved.
Resumo:
Purpose To update American Society of Clinical Oncology/American Society of Hematology recommendations for use of erythropoiesis-stimulating agents (ESAs) in patients with cancer. Methods An Update Committee reviewed data published between January 2007 and January 2010. MEDLINE and the Cochrane Library were searched. Results The literature search yielded one new individual patient data analysis and four literature-based meta-analyses, two systematic reviews, and 13 publications reporting new results from randomized controlled trials not included in prior or new reviews. Recommendations For patients undergoing myelosuppressive chemotherapy who have a hemoglobin (Hb) level less than 10 g/dL, the Update Committee recommends that clinicians discuss potential harms (eg, thromboembolism, shorter survival) and benefits (eg, decreased transfusions) of ESAs and compare these with potential harms (eg, serious infections, immune-mediated adverse reactions) and benefits (eg, rapid Hb improvement) of RBC transfusions. Individual preferences for assumed risk should contribute to shared decisions on managing chemotherapy-induced anemia. The Committee cautions against ESA use under other circumstances. If used, ESAs should be administered at the lowest dose possible and should increase Hb to the lowest concentration possible to avoid transfusions. Available evidence does not identify Hb levels � 10 g/dL either as thresholds for initiating treatment or as targets for ESA therapy. Starting doses and dose modifications after response or nonresponse should follow US Food and Drug Administration–approved labeling. ESAs should be discontinued after 6 to 8 weeks in nonresponders. ESAs should be avoided in patients with cancer not receiving concurrent chemotherapy, except for those with lower risk myelodysplastic syndromes. Caution should be exercised when using ESAs with chemotherapeutic agents in diseases associated with increased risk of thromboembolic complications. Table 1 lists detailed recommendations. This guideline was developed through a collaboration between the American Society of Clinical Oncology and the American Society of Hematology and has been published jointly by invitation and consent in both Journal of Clinical Oncology and Blood.
Resumo:
Purpose: To update American Society of Hematology/American Society of Clinical Oncology recommendations for use of erythropoiesis-stimulating agents (ESAs) in patients with cancer. Methods: An Update Committee reviewed data published between January 2007 and January 2010. MEDLINE and the Cochrane Library were searched. Results: The literature search yielded one new individual patient data analysis and four literature-based meta-analyses, two systematic reviews, and 13 publications reporting new results from randomized controlled trials not included in prior or new reviews. Recommendations: For patients undergoing myelosuppressive chemotherapy who have a hemoglobin (Hb) level less than 10 g/dL, the Update Committee recommends that clinicians discuss potential harms (eg, thromboembolism, shorter survival) and benefits (eg, decreased transfusions) of ESAs and compare these with potential harms (eg, serious infections, immune-mediated adverse reactions) and benefits (eg, rapid Hb improvement) of RBC transfusions. Individual preferences for assumed risk should contribute to shared decisions on managing chemotherapy-induced anemia. The Committee cautions against ESA use under other circumstances. If used, ESAs should be administered at the lowest dose possible and should increase Hb to the lowest concentration possible to avoid transfusions. Available evidence does not identify Hb levels 10 g/dL either as thresholds for initiating treatment or as targets for ESA therapy. Starting doses and dose modifications after response or nonresponse should follow US Food and Drug Administration-approved labeling. ESAs should be discontinued after 6 to 8 weeks in nonresponders. ESAs should be avoided in patients with cancer not receiving concurrent chemotherapy, except for those with lower risk myelodysplastic syndromes. Caution should be exercised when using ESAs with chemotherapeutic agents in diseases associated with increased risk of thromboembolic complications. Table 1 lists detailed recommendations.
Resumo:
Objectives We compared the angiographic and long-term clinical outcomes of patients with and without overlap of drug-eluting stents (DES). Background DES overlap has been associated with delayed healing and increased inflammation in experimental studies, but its impact on clinical outcome is not well established. Methods We analyzed the angiographic and clinical outcomes of 1,012 patients treated with DES in the SIRTAX (Sirolimus-Eluting Versus Paclitaxel-Eluting Stents for Coronary Revascularization) trial according to the presence or absence of stent overlap and the number of stents per vessel: 134 (13.2%) patients with multiple DES in a vessel with overlap, 199 (19.7%) patients with multiple DES in a vessel without overlap, and 679 (67.1%) patients with 1 DES per vessel. Results Angiographic follow-up at 8 months showed an increased late loss in DES overlap patients (0.33 ± 0.61 mm) compared with the other groups (0.18 ± 0.43 mm and 0.15 ± 0.38 mm, p < 0.01). The smallest minimal lumen diameter was located at the zone of stent overlap in 17 (68%) of 25 patients with stent overlap who underwent target lesion revascularization. Major adverse cardiac events were more common in patients with DES overlap (34 events, 25.4%) than in the other groups (42 events, 21.1% and 95 events, 14.0%) at 3 years (p < 0.01). Both the risk of target lesion revascularization (20.2% vs. 16.1% vs. 9.7%, p < 0.01) and the composite of death or myocardial infarction (17.2% vs. 14.1% vs. 9.1%, p = 0.01) were increased in patients with DES overlap compared with the other groups. Conclusions DES overlap occurs in >10% of patients undergoing percutaneous coronary intervention in routine clinical practice and is associated with impaired angiographic and long-term clinical outcome, including death or myocardial infarction. (Sirolimus-Eluting Versus Paclitaxel-Eluting Stents for Coronary Revascularization; NCT00297661).
Resumo:
Sulfonamides are generally classified into 2 groups: antibiotics and non-antibiotics. Recent studies showed that patients allergic to sulfonamide antibiotics do not have a specific risk for an allergy to sulfonamide non-antibiotic. However, the anti-inflammatory drug sulfasalazine represents an important exception. Used in rheumatic diseases, it is classified as a non-antibiotic sulfonamide, but is structurally related to antibiotic sulfonamides. Therefore, we aimed to analyze in vitro the cross-reactivity between the antimicrobial sulfamethoxazole and the anti-inflammatory drug sulfasalazine.
Resumo:
Once administered, a drug can activate the immune system by various mechanisms and lead to a large range of clinical manifestations closely related to the type of immune reaction elicited. Administration of the drug can classically result in an immunoglobulin E (IgE)-type sensitization, but can also result in more complex activation of the immune system potentially resulting in severe syndromes, such as the drug-induced hypersensitivity syndrome (DIHS). Although there has been a major increase in our knowledge over the last years, the exact mechanisms of drug allergy are not well understood for most clinical manifestations. A complex interaction between individual characteristics, environmental factors, and the drug itself is usually responsible for adverse reactions to drugs. In this educational review series, we described three cases of drug allergy: first, a child with a typical IgE-mediated drug allergy, second, a child with a non-immediate reaction to penicillin, and in the third patient, we will discuss the drug-induced hypersensitivity syndrome, which is rare but potentially fatal. These cases are correlated to the immune mechanism potentially involved.
Human leukocyte antigens (HLA) associated drug hypersensitivity: consequences of drug binding to HLA
Resumo:
Recent publications have shown that certain human leukocyte antigen (HLA) alleles are strongly associated with hypersensitivity to particular drugs. As HLA molecules are a critical element in T-cell stimulation, it is no surprise that particular HLA alleles have a direct functional role in the pathogenesis of drug hypersensitivity. In this context, a direct interaction of the relevant drug with HLA molecules as described by the p-i concept appears to be more relevant than presentation of hapten-modified peptides. In some HLA-associated drug hypersensitivity reactions, the presence of a risk allele is a necessary but incomplete factor for disease development. In carbamazepine and HLA-B*15:02, certain T-cell receptor (TCR) repertoires are required for immune activation. This additional requirement may be one of the 'missing links' in explaining why most individuals carrying this allele can tolerate the drug. In contrast, abacavir generates polyclonal T-cell response by interacting specifically with HLA-B*57:01 molecules. T cell stimulation may be due to presentation of abacavir or of altered peptides. While the presence of HLA-B*58:01 allele substantially increases the risk of allopurinol hypersensitivity, it is not an absolute requirement, suggesting that other factors also play an important role. In summary, drug hypersensitivity is the end result of a drug interaction with certain HLA molecules and TCRs, the sum of which determines whether the ensuing immune response is going to be harmful or not.