78 resultados para Activated Platelets
Resumo:
BACKGROUND & AIMS Patients with chronic hepatitis C virus (HCV) infection may develop cirrhosis with portal hypertension, reflected by decreased platelet count and splenomegaly. This retrospective cohort study aimed to assess changes in platelet counts after antiviral therapy among chronic HCV-infected patients with advanced fibrosis. METHODS Platelet counts and spleen sizes were recorded in an international cohort of patients with Ishak 4-6 fibrosis who started antiviral therapy between 1990 and 2003. Last measured platelet counts and spleen sizes were compared to their pre-treatment values (within 6 six months prior to the start of therapy). All registered platelet count measurements from 24 week following cessation of antiviral therapy were included in repeated measurement analyses. RESULTS This study included 464 patients; 353 (76%) had cirrhosis and 187 (40%) attained sustained virological response (SVR). Among patients with SVR, median platelet count, increased by 35 x10(9) /L (IQR 7-62, p<0.001). In comparison, patients without SVR showed a median decline of 17 x10(9) /L (IQR -5-47, p<0.001). In a subgroup of 209 patients, median decrease in spleen size was 1.0 cm (IQR 0.3-2.0) for patients with SVR, while median spleen size increased with 0.6 cm (IQR -0.1-2.0, p<0.001) among those without SVR. The changes in spleen size and platelet count were significantly correlated (R=-0.41, p<0.001). CONCLUSIONS Among chronic HCV-infected patients with advanced hepatic fibrosis the platelet counts improved following SVR and the change in platelets correlated with the change in spleen size following antiviral therapy. These results suggest that HCV eradication leads to reduced portal pressure. This article is protected by copyright. All rights reserved.
Resumo:
Multiple factors contribute to the risk of venous thromboembolism (VTE). Platelets have attracted much interest in arterial cardiovascular disease, whereas their role in VTE has received much less attention. Recent evidence suggests that platelets may play a more important role in VTE than previously anticipated. This review discusses the mechanisms that link platelets with venous thrombotic disease and their potential applications as novel risk factors for VTE. In addition, animal studies and randomized clinical trials that highlight the potential effect of antiplatelet therapy in venous thrombosis are evaluated to assess the role of platelets in VTE. The clinical significance of platelets for VTE risk assessment in specific patient cohorts and their role as a suitable therapeutic target for VTE prevention is acknowledged. The role of platelets in VTE is a promising field for future research.
Resumo:
The intracellular protozoan parasites Theileria parva and Theileria annulata transform leucocytes by interfering with host cell signal transduction pathways. They differ from tumour cells, however, in that the transformation process can be entirely reversed by elimination of the parasite from the host cell cytoplasm using a specific parasiticidal drug. We investigated the state of activation of Akt/PKB, a downstream target of PI3-K-generated phosphoinositides, in Theileria-transformed leucocytes. Akt/PKB is constitutively activated in a PI3-K- and parasite-dependent manner, as judged by the specific phosphorylation of key residues, in vitro kinase assays and its cellular distribution. In previous work, we demonstrated that the parasite induces constitutive activation of the transcription factor NF-kappaB, providing protection against spontaneous apoptosis that accompanies transformation. In a number of other systems, a link has been established between the PI3-K-Akt/PKB pathway and NF-kappaB activation, resulting in protection against apoptosis. In Theileria-transformed leucocytes, activation of the NF-kappaB and the PI3-K-Akt/PKB pathways are not directly linked. The PI3-K-Akt/PKB pathway does not contribute to the persistent induction of IkappaBalpha phosphorylation, NF-kappaB DNA-binding or transcriptional activity. We show that the two pathways are downregulated with different kinetics when the parasite is eliminated from the host cell cytoplasm and that NF-kappaB-dependent protection against apoptosis is not dependent on a functional PI3-K-Akt/PKB pathway. We also demonstrate that Akt/PKB contributes, at least in part, to the proliferation of Theileria-transformed T cells.