107 resultados para 3D in vitro model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Several epidemiological studies show that inhalation of particulate matter may cause increased pulmonary morbidity and mortality. Of particular interest are the ultrafine particles that are particularly toxic. In addition more and more nanoparticles are released into the environment; however, the potential health effects of these nanoparticles are yet unknown. OBJECTIVES: To avoid particle toxicity studies with animals many cell culture models have been developed during the past years. METHODS: This review focuses on the most commonly used in vitro epithelial airway and alveolar models to study particle-cell interactions and particle toxicity and highlights advantages and disadvantages of the different models. RESULTS/CONCLUSION: There are many lung cell culture models but none of these models seems to be perfect. However, they might be a great tool to perform basic research or toxicity tests. The focus here is on 3D and co-culture models, which seem to be more realistic than monocultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Magnesium aspartate hydrochloride (Magnesiocard, Mg-Asp-HCl) is proposed as a substitute of magnesium sulfate for the treatment of preeclampsia and premature labor. After an i.v. administration of a dose equivalent to that used in the treatment of preeclampsia to nonpregnant volunteers, a 10-fold increase of aspartic acid (Asp) over the physiological level was observed. Animal experiments have demonstrated that highly increased fetal levels of acidic amino acids such as Asp could be associated with neurotoxic damage in the fetal brain. The influence of such an elevation of Asp concentration in the maternal circuit on the fetal level, using the in vitro perfusion model of human placenta, was investigated. STUDY DESIGN: After a control phase (2h), a therapeutic dose of Mg combined with Asp (Magnesiocard, Mg-Asp-HCl) was applied to the maternal circuit approaching 10 times the physiological level of Asp. The administration was performed in two different phases simulating either a peak of maximum concentration (bolus application, 2h) or a steady state level (initially added, 4h). RESULTS: In four experiments, during experimental phases (6h) a slow increase in concentration in the fetal circuit was seen for Mg, AIB (alpha-aminoisobutyric acid, artificial amino acid) and creatinine confirming previous observations. In contrast, no net transfer of Asp across the placenta was seen. A continuous decrease in the concentration of Asp on both maternal and fetal side suggests active uptake and metabolization by the placenta. Viability control parameters remained stable indicating the absence of an effect on placental metabolism, permeability and morphology. CONCLUSION: Elevation of Asp concentration up to 10 times the physiological level by the administration of Mg-Asp-HCl to the maternal circuit under in vitro perfusion conditions of human placenta has no influence on the fetal level of Asp suggesting no transfer of Asp from the maternal to fetal compartment. Therefore, the administration of Mg-Asp-HCl to preeclamptic patients would be beneficial for the patients without any impact on placental or fetal physiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Anti-inflammatory drugs are used in the treatment of acute renal colic. The aim of this study was to investigate the effects of selective COX-2 inhibitors and the non-selective COX inhibitor diclofenac on contractility of human and porcine ureters in vitro and in vivo, respectively. COX-1 and COX-2 receptors were identified in human ureter and kidney. EXPERIMENTAL APPROACH: Human ureter samples were used alongside an in vivo pig model with or without partial ureteral obstruction. COX-1 and COX-2 receptors were located in human ureters by immunohistochemistry. KEY RESULTS: Diclofenac and valdecoxib significantly decreased the amplitude of electrically-stimulated contractions in human ureters in vitro, the maximal effect (Vmax) being 120 and 14%, respectively. Valdecoxib was more potent in proximal specimens of human ureter (EC50=7.3 x 10(-11) M) than in distal specimens (EC50=7.4 x 10(-10) M), and the Vmax was more marked in distal specimens (22.5%) than in proximal specimens (8.0%) in vitro. In the in vivo pig model, parecoxib, when compared to the effect of its solvent, significantly decreased the maximal amplitude of contractions (Amax) in non-obstructed ureters but not in obstructed ureters. Diclofenac had no effect on spontaneous contractions of porcine ureter in vivo. COX-1 and COX-2 receptors were found to be expressed in proximal and distal human ureter and in tubulus epithelia of the kidney. CONCLUSIONS AND IMPLICATIONS: Selective COX-2 inhibitors decrease the contractility of non-obstructed, but not obstructed, ureters of the pig in vivo, but have a minimal effect on electrically-induced contractions of human ureters in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Blood-brain barrier (BBB) breakdown is an early event in the pathogenesis of multiple sclerosis (MS). In a previous study we have found a direct stabilization of barrier characteristics after treatment of bovine brain capillary endothelial cells (BCECs) with human recombinant interferon-beta-1a (IFN-beta-1a) in an in vitro BBB model. In the present study we examined the effect of human recombinant IFN-beta-1a on the barrier properties of BCECs derived from four different species including humans to predict treatment efficacy of IFN-beta-1a in MS patients. METHODS: We used primary bovine and porcine BCECs, as well as human and murine BCEC cell lines. We investigated the influence of human recombinant IFN-beta-1a on the paracellular permeability for 3H-inulin and 14C-sucrose across monolayers of bovine, human, and murine BCECs. In addition, the transendothelial electrical resistance (TEER) was determined in in vitro systems applying porcine and murine BCECS. RESULTS: We found a stabilizing effect on the barrier characteristics of BCECs after pretreatment with IFN-beta-1a in all applied in vitro models: addition of IFN-beta-1a resulted in a significant decrease of the paracellular permeability across monolayers of human, bovine, and murine BCECs. Furthermore, the TEER was significantly increased after pretreatment of porcine and murine BCECs with IFN-beta-1a. CONCLUSION: Our data suggest that BBB stabilization by IFN-beta-1a may contribute to its beneficial effects in the treatment of MS. A human in vitro BBB model might be useful as bioassay for testing the treatment efficacy of drugs in MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Using an in vitro triple cell co-culture model consisting of human epithelial cells (16HBE14o-), monocyte-derived macrophages and dendritic cells, it was recently demonstrated that macrophages and dendritic cells create a transepithelial network between the epithelial cells to capture antigens without disrupting the epithelial tightness. The expression of the different tight junction proteins in macrophages and dendritic cells, and the formation of tight junction-like structures with epithelial cells has been demonstrated. Immunofluorescent methods combined with laser scanning microscopy and quantitative real-time polymerase chain reaction were used to investigate if exposure to diesel exhaust particles (DEP) (0.5, 5, 50, 125 mug/ml), for 24 h, can modulate the expression of the tight junction mRNA/protein of occludin, in all three cell types. RESULTS: Only the highest dose of DEP (125 mug/ml) seemed to reduce the occludin mRNA in the cells of the defence system however not in epithelial cells, although the occludin arrangement in the latter cell type was disrupted. The transepithelial electrical resistance was reduced in epithelial cell mono-cultures but not in the triple cell co-cultures, following exposure to high DEP concentration. Cytotoxicity was not found, in either epithelial mono-cultures nor in triple cell co-cultures, after exposure to the different DEP concentrations. CONCLUSION: We concluded that high concentrations of DEP (125 mug/ml) can modulate the tight junction occludin mRNA in the cells of the defence system and that those cells play an important role maintaining the epithelial integrity following exposure to particulate antigens in lung cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Testosterone (T) is a therapeutic option for women with hypoactive sexual desire disorder. T may have an impact on the mammary gland by altering local estrogen synthesis. The aim of the present study was to measure the effect of T on estrone-sulfate (E1S)-sulfatase (STS) expression, and activity using hormone-dependent BC cells with high and low aggressive potential (BT-474, MCF-7), and HBL-100 as a breast cell line of non-malignant origin. METHODS: Cells were incubated in RPMI 1640 medium containing 5% steroid-depleted fetal calf serum for 3d, and subsequently incubated in absence or presence of T alone, and combined with anastrozole (A) at 10(-8)M, and 10(-6)M at 37 degrees C for either 24h or directly in cell extracts ("direct"). STS protein expression was measured by dot-blot (immunoblotting), and STS, HSD17B1 and HSD17B2 mRNA levels by quantitative RT-PCR. STS activity was evaluated by incubating homogenized breast cells with [(3)H]-E1S and separating the products E1, and E2 by thin layer chromatography. RESULTS: Basal STS mRNA expression did not reveal group differences. However, STS mRNA was decreased by T+A in MCF-7 cells. 17HSDB1 expression was decreased by T+A in BT-474 cells, and 17HSDB2 expression was decreased by A and T+A treatment in MCF-7 cells. Basal and T treated STS protein expression was significantly higher in malignant compared to non-malignant breast cells. However, T did not induce significant intra-cell line differences. Similarly, basal and T treated STS activity was significantly higher in highly malignant compared to non-malignant breast cells. Regardless of cell lines, T slightly decreased STS activity after "direct" incubation, but led to an increase of local estrogen formation after 24h which was attenuated, and partly reversed by A, respectively. CONCLUSIONS: The more aggressive the breast cell line, the higher the local estrogen formation. The transition from normal to malignant seems to be accompanied by an altered autoregulation. The given local endocrine milieu seems to be essential for response to T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intra-alveolar fibrin is formed following lung injury and inflammation and may contribute to the development of pulmonary fibrosis. Fibrin turnover is altered in patients with pulmonary fibrosis, resulting in intra-alveolar fibrin accumulation, mainly due to decreased fibrinolysis. Alveolar type II epithelial cells (AEC) repair the injured alveolar epithelium by migrating over the provisional fibrin matrix. We hypothesized that repairing alveolar epithelial cells modulate the underlying fibrin matrix by release of fibrinolytic activity, and that the degree of fibrinolysis modulates alveolar epithelial repair on fibrin. To test this hypothesis we studied alveolar epithelial wound repair in vitro using a modified epithelial wound repair model with human A549 alveolar epithelial cells cultured on a fibrin matrix. In presence of the inflammatory cytokine interleukin-1beta, wounds increase by 800% in 24 hours mainly due to detachment of the cells, whereas in serum-free medium wound areas decreases by 22.4 +/- 5.2% (p < 0.01). Increased levels of D-dimer, FDP and uPA in the cell supernatant of IL-1beta-stimulated A549 epithelial cells indicate activation of fibrinolysis by activation of the plasmin system. In presence of low concentrations of fibrinolysis inhibitors, including specific blocking anti-uPA antibodies, alveolar epithelial repair in vitro was improved, whereas in presence of high concentrations of fibrinolysis inhibitors, a decrease was observed mainly due to decreased spreading and migration of cells. These findings suggest the existence of a fibrinolytic optimum at which alveolar epithelial repair in vitro is most efficient. In conclusion, uPA released by AEC alters alveolar epithelial repair in vitro by modulating the underlying fibrin matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE: Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: Proximal diffusion of local anaesthetic solution after perineural anaesthesia may lead to the desensitisation of structures other than those intended. However, there is no evidence-based study demonstrating the potential distribution and diffusion of local anaesthetic solution after perineural analgesia in the distal limb. OBJECTIVE: To document the potential diffusion of local anaesthetic solution using a radiopaque contrast model and to evaluate the influence of walking compared with confinement in a stable after injection. METHODS: Radiopaque contrast medium was injected subcutaneously over one palmar nerve at the base of the proximal sesamoid bones in 6 nonlame mature horses. Horses were assigned randomly to stand still or walk after injection. Radiographs were obtained 0, 5, 10, 15, 20 and 30 min after injection and were analysed to determine the distribution and diffusion of the contrast medium. RESULTS: In 89% of injections an elongated pattern of the contrast medium was observed suggesting distribution along the neurovascular bundle. After 49% of injections a fine radiopaque line extended proximally from the contrast 'patch', and in 25% of injections a line extended distally. There was significant proximal and distal diffusion with time when sequential radiographs of each limb were compared. The greatest diffusion occurred in the first 10 min. Walking did not significantly influence the extent of either proximal or distal diffusion. CONCLUSIONS AND POTENTIAL RELEVANCE: Significant proximal diffusion occurs in the first 10 min after perineural injection in the distal aspect of the limb and should be considered when interpreting nerve blocks. Distribution of local anaesthetic solution outside the fascia surrounding the neurovascular bundle or in lymphatic vessels may explain delayed or decreased effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To biomechanically test the properties of three different Universal Micro External Fixator (UMEX™) configurations with regard to their use in very small animals (<5kg) and compare the UMEX system to the widely used IMEX External Skeletal Fixation (SK™) system in terms of stiffness, space needed for pin placement and weight. METHODS Three different UMEX configurations (type Ia, type Ib, and type II modified) and one SK configuration type Ia were used to stabilize Delrin plastic rods in a 1 cm fracture gap model. These constructs were tested in axial compression, craniocaudal bending, mediolateral bending, and torsion. Testing was conducted within the elastic range and mean stiffness in each mode was determined from the slope of the linear portion of the load-deformation curve. A Kruskal Wallis one-way analysis of variance on ranks test was utilized to assess differences between constructs (p <0.05). RESULTS The UMEX type II modified configuration was significantly stiffer than the other UMEX configurations and the SK type Ia, except in craniocaudal bending, where the SK type Ia configuration was stiffer than all UMEX constructs. The UMEX type Ia configuration was significantly the weakest of those frames. The UMEX constructs were lighter and smaller than the SK, thus facilitating closer pin placement. CONCLUSIONS Results supported previous reports concerning the superiority of more complex constructs regarding stiffness. The UMEX system appears to be a valid alternative for the treatment of long-bone fractures in very small animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Besides α1,3 galactosyltransferase (Gal) gene knockout several transgene combinations to prevent pig-to-human xenograft rejection are being investigated. hCD46/HLA-E double transgenic pigs were tested for prevention of xenograft rejection in an ex vivo pig-to-human xenoperfusion model. In addition, expression of human thrombomodulin (hTM-) on wild-type and/or multi-transgenic (GalTKO/hCD46) background was evaluated to overcome pig-to-human coagulation incompatibility. Methods hCD46/HLA-E double transgenic as well as wild-type pig forelimbs were ex vivo perfused with whole, heparinized human blood and autologous blood, respectively. Blood samples were analyzed for production of porcine and/or human inflammatory cytokines. Biopsy samples were examined for deposition of complement proteins as well as E-selectin and VCAM-1 expression. Serial blood cell counts were performed to analyze changes in human blood cell populations. In vitro, PAEC were analyzed for ASGR1 mediated human platelet phagocytosis. In addition, a biochemical assay was performed using hTM-only and multi-transgenic (GalTKO/hCD46/hTM) pig aortic endothelial cells (PAEC) to evaluate the ability of hTM to generate activated protein C (APC). Subsequently, the anti-coagulant properties of hTM were tested in a microcarrier based coagulation assay with PAEC and human whole blood. Results No hyperacute rejection was seen in the ex vivo perfusion model. Extremity perfusions lasted for up to 12 h without increase of vascular resistance and had to be terminated due to continuous small blood losses. Plasma levels of porcine IL1β (P < 0.0001), and IL-8 (P = 0.019) as well as human C3a, C5a and soluble C5b-9 were significantly (P < 0.05–<0.0001) lower in blood perfused through hCD46/HLA-E transgenic as compared to wild-type limbs. C3b/c, C4b/c, and C6 deposition as well as E-selectin and VCAM-1 expression were significantly (P < 0.0001) higher in tissue of wild-type as compared to transgenic limbs. Preliminary immunofluorescence staining results showed that the expression of hCD46/HLA-E is associated with a reduction of NK cell tissue infiltration (P < 0.05). A rapid decrease of platelets was observed in all xenoperfusions. In vitro findings showed that PAEC express ASGR1 and suggest that this molecule is involved in human platelet phagocytosis. In vitro, we found that the amount of APC in the supernatant of hTM transgenic cells increased significantly (P < 0.0001) with protein C concentration in a dose-dependent manner as compared to control PAEC lacking hTM, where the turnover of the protein C remained at the basal level for all of the examined concentration. In further experiments, hTM also showed the ability to prevent blood coagulation by three- to four-fold increased (P < 0.001) clotting time as compared to wild-type PAEC. The formation of TAT complexes was significantly lower when hTM-transgenic cells (P < 0.0001) were used as compared to wild-type cells. Conclusions Transgenic hCD46/HLA-E expression clearly reduced humoral xenoresponses since the terminal pathway of complement, endothelial cell activation, inflammatory cytokine production and NK-cell tissue infiltration were all down-regulated. We also found ASGR1 expression on the vascular endothelium of pigs, and this molecule may thus be involved in binding and phagocytosis of human platelets during pig-to-human xenotransplantation. In addition, use of the hTM transgene has the potential to overcome coagulation incompatibilities in pig-to-human xenotransplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Patients with Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) are often exposed simultaneously to a few potentially culprit drugs. However, both the standard lymphocyte transformation tests (LTT) with proliferation as the assay end-point as well as skin tests, if done, are often negative. OBJECTIVE As provocation tests are considered too dangerous, there is an urgent need to identify the relevant drug in SJS/TEN and to improve sensitivity of tests able to identify the causative drug. METHODS Fifteen patients with SJS/TEN with the ALDEN score ≥ 6 and 18 drug-exposed controls were included. Peripheral blood mononuclear cells (PBMC) were isolated and cultured under defined conditions with drugs. LTT was compared to the following end-points: cytokine levels in cell culture supernatant, number of granzyme B secreting cells by ELISpot and intracellular staining for granulysin and IFNγ in CD3(+) CD4(+), CD3(+) CD8(+) and NKp46(+) cells. To further enhance sensitivity, the effect of IL-7/IL-15 pre-incubation of PBMC was evaluated. RESULTS Lymphocyte transformation tests was positive in only 4/15 patients (sensitivity 27%, CI: 8-55%). Similarly, with granzyme B-ELISpot culprit drugs were positive in 5/15 patients (sensitivity 33%, CI: 12-62%). The expression of granulysin was significantly induced in NKp46(+) and CD3(+) CD4(+) cells (sensitivity 40%, CI: 16-68% and 53%, CI: 27-79% respectively). Cytokine production could be demonstrated in 38%, CI: 14-68% and 43%, CI: 18-71% of patients for IL-2 and IL-5, respectively, and in 55%, CI: 23-83% for IFNγ. Pre-incubation with IL-7/IL-15 enhanced drug-specific response only in a few patients. Specificities of tested assays were in the range of 95 (CI: 80-99%)-100% (CI: 90-100%). CONCLUSIONS AND CLINICAL RELEVANCE Granulysin expression in CD3(+) CD4(+) , Granzyme B-ELISpot and IFNγ production considered together provided a sensitivity of 80% (CI: 52-96%) and specificity of 95% (80-99%). Thus, this study demonstrated that combining different assays may be a feasible approach to identify the causative drug of SJS/TEN reactions; however, confirmation on another group of patients is necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dietary energy restriction to 49% of total energy requirements was conducted with Red Holstein cows for three weeks in mid-lactation. At the last day of the restriction phase, primary bovine mammary epithelial cells (pbMEC) of eight restriction (RF) and seven control-fed (CF) cows were extracted out of one litre of milk and cultured. In their third passage, an immune challenge with the most prevalent, heat-inactivated mastitis pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was conducted. Lactoferrin (LF) was determined on gene expression and protein level. An enzyme-linked immunosorbent assay (ELISA) was developed to determine LF in milk samples taken twice weekly throughout the animal trial, beginning on day 20 pp (post-partum) until day 150 pp, in cell culture total protein and in cell culture supernatant. Milk LF increased throughout the lactation and decreased significantly during the induced energy deficiency in the RF group. At the beginning of realimentation, LF concentration increased immediately in the RF group and reached higher levels than before the induced deficit following the upward trend seen in the CF group. Cell culture data revealed higher levels (up to sevenfold up-regulation in gene expression) and significant higher LF protein concentration in the RF compared to the CF group cells. A further emphasized effect was found in E. coli compared to S. aureus exposed cells. The general elevated LF levels in the RF pbMEC group and the further increase owing to the immune challenge indicate an unexpected memory ability of milk-extracted mammary cells that were transposed into in vitro conditions and even displayed in the third passage of cultivation. The study confirms the suitability of the non-invasive milk-extracted pbMEC culture model to monitor the influence of feeding experiments on immunological situations in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sirtuins (SIRT1-7) are a highly conserved family of NAD(+)-dependent enzymes that control the activity of histone and nonhistone regulatory proteins. SIRT1 is purposed to promote longevity and to suppress the initiation of some cancers. Nevertheless, SIRT1 is reported to function as a tumor suppressor as well as an oncogenic protein. Our data show that compared with normal liver or surrounding tumor tissue, SIRT1 is strongly overexpressed in human hepatocellular carcinoma (HCC). In addition, human HCC cell lines (Hep3B, HepG2, HuH7, HLE, HLF, HepKK1, skHep1) were screened for the expression of the sirtuin family members and only SIRT1 was consistently overexpressed compared with normal hepatocytes. To determine its effect on HCC growth, SIRT1 activity was inhibited either with lentiviruses expressing short hairpin RNAs or with the small molecule inhibitor, cambinol. Knockdown or inhibition of SIRT1 activity had a cytostatic effect, characterized by an altered morphology, impaired proliferation, an increased expression of differentiation markers, and cellular senescence. In an orthotopic xenograft model, knockdown of SIRT1 resulted in 50% fewer animals developing tumors and cambinol treatment resulted in an overall lower tumor burden. Taken together, our data show that inhibition of SIRT1 in HCC cells impairs their proliferation in vitro and tumor formation in vivo. These data suggest that SIRT1 expression positively influences the growth of HCC and support further studies aimed to block its activity alone or in combination as a novel treatment strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications. Copyright © 2013 John Wiley & Sons, Ltd.