86 resultados para H2O


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Early measurements of Rosettaâs target comet, 67P/Churyumov-Gerasimenko (67P), showed a strongly heterogeneous coma in H2O, CO, and CO2. Aims. The purpose of this work is to further investigate the coma heterogeneity of 67P, and to provide predictions for the near-perihelion outgassing profile based on the proposed explanations. Methods. Measurements of various minor volatile species by ROSINA/DFMS on board Rosetta are examined. The analysis focuses on the currently poorly illuminated winter (southern) hemisphere of 67P. Results. Coma heterogeneity is not limited to the major outgassing species. Minor species show better correlation with either H2O or CO2. The molecule CH4 shows a different diurnal pattern from all other analyzed species. Such features have implications for nucleus heterogeneity and thermal processing. Conclusions. Future analysis of additional volatiles and modeling the heterogeneity are required to better understand the observed coma profile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bitopic ligand, 4-(3,5-dimethylpyrazol-4-yl)-1,2,4-triazole (Hpz-tr) (1), containing two different heterocyclic moieties was employed for the design of copper(II)âmolybdate solids under hydrothermal conditions. In the multicomponent CuII/Hpz-tr/MoVI system, a diverse set of coordination hybrids, [Cu(Hpz-tr)2SO4]·3H2O (2), [Cu(Hpz-tr)Mo3O10] (3), [Cu4(OH)4(Hpz-tr)4Mo8O26]·6H2O (4), [Cu(Hpz-tr)2Mo4O13] (5), and [Mo2O6(Hpz-tr)]·H2O (6), was prepared and characterized. A systematic investigation of these systems in the form of a ternary crystallization diagram approach was utilized to show the influence of the molar ratios of starting reagents, the metal (CuII and MoVI) sources, the temperature, etc., on the reaction products outcome. Complexes 2â4 dominate throughout a wide crystallization range of the composition triangle, while the other two compounds 5 and 6 crystallize as minor phases in a narrow concentration range. In the crystal structures of 2â6, the organic ligand behaves as a short [NâN]-triazole linker between metal centers Cu···Cu in 2â4, Cu···Mo in 5, and Mo···Mo in 6, while the pyrazolyl function remains uncoordinated. This is the reason for the exceptional formation of low-dimensional coordination motifs: 1D for 2, 4, and 6 and 2D for 3 and 5. In all cases, the pyrazolyl group is involved in H bonding (H-donor/H-acceptor) and is responsible for ÏâÏ stacking, thus connecting the chain and layer structures in more complicated H-bonding architectures. These compounds possess moderate thermal stability up to 250â300 °C. The magnetic measurements were performed for 2â4, revealing in all three cases antiferromagnetic exchange interactions between neighboring CuII centers and long-range order with a net moment below Tc of 13 K for compound 4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heating of a pink two-dimensional Co(II) coordination network {[Co2(μ2-OH2)(bdc)2(S-nia)2(H2O)(dmf)]·2(dmf)·(H2O)}n (1) built from 1,4-benzenedicarboxylic acid (H2bdc) residues and thionicotinamide (S-nia) ligands initiates a single-crystal-to-single-crystal transition accompanied by removal of both coordinated and co-crystallized solvents. In the dry blue form, [Co(bdc)(S-nia)]n (dry_1), the Co(II) centers changed from an octahedral to a square pyramidal configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Bladder outlet obstruction may occur after any incontinence surgery and may present as OAB, hesitancy and or the feeling of incomplete emptying. Aim of this study was to analyze the clinical and urodynamical outcome after urethrolysis in patients presenting with various clinical symptoms after Burch colposuspension for stress urinary incontinence. STUDY DESIGN Between January 2005 and December 2014, all patients who presented with symptoms and with bladder outlet obstruction were included. All patients had undergone Burch or Cowan colposuspension for stress urinary incontinence previously. Primary endpoint was the visual analogue scale (VAS) as measurement of patient perceived disease impact. Secondary endpoints were the various domains of the King's Health Questionnaire, urodynamic parameters as detrusor pressure at maximum flow, residual urine and sonographic bladder wall thickness before and six months after intervention. RESULTS Seventy-two female patients were included in this study whereof 42 suffered from urgency and urge incontinence, 20 from hesitancy and/or slow stream, seven from residual urine of more than 100ml and three from a combination of urgency and residual urine. VAS improved significantly (p<0.0001). Quality of life as determined by the King's Health Questionnaire improved for the domains general health, role limitations, emotions, physical limitations, personal limitations and incontinence impact significantly. Micturition pressure dropped significantly from 43cmH2O (95% CI 19-59cmH2O) to 18cmH2O (95% CI 16-23.5 H2O). Residual urine changed from 110ml (range 20-380ml) to 32ml (20-115ml). Bladder wall thickness decreased from 7mm (95% CI 6.235-7.152) to 5mm (95% CI 5.037-5.607; p<0.01). CONCLUSION Urethrolysis may resolve patients' symptoms and lower micturition pressure but irritative symptoms may persist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTEXT Tibial nerve stimulation (TNS) is a promising therapy for non-neurogenic lower urinary tract dysfunction and might also be a valuable option for patients with an underlying neurological disorder. OBJECTIVE We systematically reviewed all available evidence on the efficacy and safety of TNS for treating neurogenic lower urinary tract dysfunction (NLUTD). EVIDENCE ACQUISITION The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement. EVIDENCE SYNTHESIS After screening 1943 articles, 16 studies (4 randomized controlled trials [RCTs], 9 prospective cohort studies, 2 retrospective case series, and 1 case report) enrolling 469 patients (283 women and 186 men) were included. Five studies reported on acute TNS and 11 on chronic TNS. In acute and chronic TNS, the mean increase of maximum cystometric capacity ranged from 56 to 132mL and from 49 to 150mL, and the mean increase of bladder volume at first detrusor overactivity ranged from 44 to 92mL and from 93 to 121mL, respectively. In acute and chronic TNS, the mean decrease of maximum detrusor pressure during the storage phase ranged from 5 to 15cm H2O and from 4 to 21cm H2O, respectively. In chronic TNS, the mean decrease in number of voids per 24h, in number of leakages per 24h, and in postvoid residual ranged from 3 to 7, from 1 to 4, and from 15 to 55mL, respectively. No TNS-related adverse events have been reported. Risk of bias and confounding was high in most studies. CONCLUSIONS Although preliminary data of RCTs and non-RCTs suggest TNS might be effective and safe for treating NLUTD, the evidence base is poor, derived from small, mostly noncomparative studies with a high risk of bias and confounding. More reliable data from well-designed RCTs are needed to reach definitive conclusions. PATIENT SUMMARY Early data suggest tibial nerve stimulation might be effective and safe for treating neurogenic lower urinary tract dysfunction, but more reliable evidence is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this work has been to calibrate sensitivities and fragmentation pattern of various molecules as well as further characterize the lab model of the ROSINA Double Focusing Mass Spectrometer (DFMS) on board ESAâs Rosetta spacecraft bound to comet 67P/Churyumov-Gerasimenko. The detailed calibration and characterization of the instrument is key to understand and interpret the results in the coma of the comet. A static calibration was performed for the following species: Ne, Ar, Kr, Xe, H2O, N2, CO2, CH4, C2H6, C3H8, C4H10, and C2H4. The purpose of the calibration was to obtain sensitivities for all detectors and emissions, the fragmentation behavior of the ion source and to show the capabilities to measure isotopic ratios at the comet. The calibration included the recording of different correction factors to evaluate the data, including a detailed investigation of the detector gain. The quality of the calibration that could be tested for different gas mixtures including the calibration of the density inside the ion source when calibration gas from the gas calibration unit is introduced. In conclusion the calibration shows that DFMS meets the design requirements and that DFMS will be able to measure the D/H at the comet and help shed more light on the puzzle about the origin of water on Earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to constrain the salinity of subduction zone fluids, piston-cylinder experiments have been conducted to investigate the partitioning behaviour of Cl and F in subducted sediments. These experiments were performed at H2O-undersaturated conditions with a synthetic pelite starting composition containing 800 ppm Cl, over a pressure and temperature range of 2.5â4.5 GPa and 630â900 °C. Repetitive experiments were conducted with 1900 ppm Cl + 1000 ppm F, and 2100 ppm Cl. Apatite represents the most Cl-abundant mineral phase, with Cl concentration varying in the range 0.1â2.82 wt%. Affinity for Cl decreases over the following sequence: aqueous fluid > apatite ⩾ melt > other hydrous minerals (phengite, biotite and amphibole). It was found that addition of F to the Cl-bearing starting composition significantly lowers the Cl partition coefficients between apatite and melt (DClApâmelt) and apatite and aqueous fluid (DClApâaq). ClâOH exchange coefficients between apatite and melt (KdClâOHApâmelt) and apatite and aqueous fluid (KdClâOHApâaq) were subsequently calculated. KdClâOHApâmelt was found to vary from 1 to 58, showing an increase with temperature and a decrease with pressure and displaying a regular decrease with increasing H2O content in melt. Mole fractions of Cl and OH in melt were calculated based on an ideal mixing model for H2O, OH, O, Cl and F. The Cl contents of other hydrous minerals (phengite, biotite and amphibole) fall between 200 and 800 ppm, with resultant Cl partition coefficients from 0.02 to 0.49, appearing independent of the bulk Cl and F content. Preliminary data from this study show that the partitioning behaviour of F is strongly in favour of apatite relative to melt and phengite, with DFApâmelt = 15â51. Apatites from representative eclogite facies metasediments were examined and found to have low Cl contents close to ∼100 ppm. Calculations using our experimentally determined KdClâOHApâaq of 0.004 at 2.5 GPa, 630 °C indicate a low salinity character (0.5â2 wt% NaCleq) for the fluid formed during dehydration of subducted oceanic sediment at ∼80 km depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comets are thought to be the most pristine bodies present in the Solar System. In consequence of spending the majority of their existence beyond 30 AU, their composition can give insights on the physical and chemical conditions during their formation. Since August 2014 the European Space Agency spacecraft Rosetta accompanies the Jupiter family comet 67P/Churyumov-Gerasimenko on its way to perihelion and beyond. In this study the isotope fractionation of 34S are reported in H2S, OCS, SO2, S2, and CS2 at 67P. In addition for the first time the isotope fractionation for 33S is presented for cometary volatiles. The ratio 32S/33S is given for H2S, SO2 and a tentative value is given for CS2. With a mean value of -50 ± 22â° and -306 ± 31â° for δ34S and δ33S respectively, H2S shows a significant depletion in both 34S and 33S. For SO2 the depletion is less distinct with δ34S and δ33S being -67 ± 40â° and -130 ± 53â°, respectively. The strongest depletion is present for CS2 with -114 ± 21â°and -276 ± 55â°, respectively. For OCS and S2 only δ34S could be determined which is -252 ± 77â° and -357 ± 145â°, respectively. A comparison with sulfur isotopic ratios measured in SiC grains revealed that both SiC grains and the five volatile species have similar sulfur isotopic ratios. However, it is beyond the scope of this work to investigate the possibility of a link between SiC grains and cometary ices. Nevertheless, mass-dependent or mass-independent fractionation due to photo dissociation can be ruled out as sole cause of the seen depletion of 33S and 34S. Furthermore, an upper limit of (9.64 ± 0.19)·10.4 for D/H in HDS has been determined. This value is about a factor two higher than D/H in H2O for the same comet reported by (Altwegg et al., 2015). Besides the investigation concerning isotopic ratios of sulfur bearing species in this work the calibration and characterization of ROSINA/DFMS has been continued. Here it is reported about the deviation of the mass scale for MCP/LEDA low resolution spectra and the calibration measurements performed in the laboratory. Furthermore the outcome of the attempt to describe the sensitivity of DFMS with an empirical function will be discussed. The last part of the characterization of DFMS is dedicated to determine the so-called individual pixel gain for the laboratory and the flight model. Moreover, correlation between the depletionâs manifestation of the MCP with respect to the applied voltages has been investigated for both models. It has been found that further measurements are needed to understand the manifestation of depletion at the laboratory model. For the model on board of Rosetta it could be shown that most of the present feature are due to the usage of the MCP and suggestions have been made in order to answer the remaining question considering the depletion of the MCP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We report on the first major temporal morphological changes observed on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko in the smooth terrains of the Imhotep region. Methods. We used images of the OSIRIS cameras onboard Rosetta to follow the temporal changes from 24 May 2015 to 11 July 2015. Results. The morphological changes observed on the surface are visible in the form of roundish features that are growing in size from a given location in a preferential direction at a rate of 5.6-8.1 x 10(-5) m s(-1) during the observational period. The location where the changes started and the contours of the expanding features are bluer than the surroundings, which suggests that ices (H2O and/or CO2) are exposed on the surface. However, sublimation of ices alone is not sufficient to explain the observed expanding features. No significant variations in the dust activity pattern are observed during the period of changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of environmental conditions influencing photosynthesis and photorespiration on senescence and net protein degradation were investigated in segments from the first leaf of young wheat (Triticum aestivum L. cv. Arina) plants. The segments were floated on H2O at 25, 30 or 35°C in continuous light (PAR: 50 or 150 µmol mâˆ2 sâˆ1) in ambient air and in CO2-depleted air. Stromal enzymes, including phosphoglycolate phosphatase, glutamine synthetase, ferredoxin-dependent glutamate synthase, phosphoribulokinase, and the peroxisomal enzyme, glycolate oxidase, were detected by SDS-PAGE followed by immunoblotting with specific antibodies. In general, the net degradation of proteins and chlorophylls was delayed in CO2-depleted air. However, little effect of CO2 on protein degradation was observed at 25°C under the lower level of irradiance. The senescence retardation by the removal of CO2 was most pronounced at 30°C and at the higher irradiance. The stromal enzymes declined in a coordinated manner. Immunoreactive fragments from the degraded polypeptides were in most cases not detectable. However, an insolubilized fragment of glycolate oxidase accumulated in vivo, especially at 25°C in the presence of CO2. Detection of this fragment was minimal after incubation at 30°C and completely absent on blots from segments kept at 35°C. In CO2-depleted air, the fragment was only weakly detectable after incubation at 25°C. The results from these investigations indicate that environmental conditions that influence photosynthesis may interfere with senescence and protein catabolism in wheat leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the mid-latitudes of Utopia Planitia (UP), Mars, a suite of spatially-associated landforms exhibit geomorphological traits that, on Earth, would be consistent with periglacial processes and the possible freeze-thaw cycling of water. The suite comprises small-sized polygonally-patterned ground, polygon-junction and -margin pits, and scalloped, rimless depressions. Typically, the landforms incise a dark-toned terrain that is thought to be ice-rich. Here, we investigate the dark-toned terrain by using high resolution images from the HiRISE as well as near-infrared spectral-data from the OMEGA and CRISM. The terrain displays erosional characteristics consistent with a sedimentary nature and near-infrared spectra characterised by a blue slope similar to that of weathered basaltic-tephra. We also describe volcanic terrain that is dark-toned and periglacially-modified in the Kamchatka mountain-range of eastern Russia. The terrain is characterised by weathered tephra inter-bedded with snow, ice-wedge polygons and near-surface excess ice. The excess ice forms in the pore space of the tephra as the result of snow-melt infiltration and, subsequently, in-situ freezing. Based on this possible analogue, we construct a three-stage mechanism that explains the possible ice-enrichment of a broad expanse of dark-toned terrain at the mid-latitudes of UP: (1) the dark-toned terrain accumulates and forms via the regional deposition of sediments sourced from explosive volcanism; (2) the volcanic sediments are blanketed by atmospherically-precipitated (H2O) snow, ice or an admixture of the two, either concurrent with the volcanic-events or between discrete events; and, (3) under the influence of high obliquity or explosive volcanism, boundary conditions tolerant of thaw evolve and this, in turn, permits the migration, cycling and eventual formation of excess ice in the volcanic sediments. Over time, and through episodic iterations of this scenario, excess ice forms to decametres of depth. (C) 2015 Elsevier B.V. All rights reserved.