102 resultados para whole corn
Resumo:
Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.
Resumo:
The objective of this study was to identify a suitable alternative to the current practice of complementing the feeding of milk by-products with straw. The influence of 5 different types of solid feeds on health and performance of Swiss veal calves was investigated in 2 production cycles of 200 veal calves each with a mean initial age of 40 days (d). The calves were housed in groups of 40 in stalls with outside pen. Liquid feeding consisted of a milk by-product combined with an additional skim milk powder ad libitum. Groups were assigned to 1 of the 5 following experimental solid feeds provided ad libitum: mix (composition: soy flakes, corn, barley, wheat, oat, barley middling, plant oil, molasses), whole plant corn pellets, corn silage, hay, and wheat straw as control. Daily dry matter intake per calf averaged 2.25 kg of the liquid food, 0.16 kg of straw, 0.33 kg of mix, 0.47 kg of corn silage, 0.38 kg of corn pellets, and 0.39 kg of hay. No significant differences (P > 0.05) among groups were found in calf losses that amounted to 4.8 % (68 % because of gastrointestinal disorders). Four percent of the calves were slaughtered prematurely. Daily doses of antibiotics were higher in the mix (36.9 d, P < 0.01) and in the corn silage groups (35 d, P < 0.01) compared to control. Compared to the 4 other groups, calves of the straw group showed the highest prevalence of abnormal ruminal content (73 %, P < 0.05), of abnormal ruminal papillae (42 %, P < 0.05), of abomasal fundic lesions (13.5 %, P < 0.1), and the lowest number of chewing movements per bolus (45, P < 0.05). The hemoglobin concentration averaged 85 g/l at the beginning and 99 g/l at the end of the fattening period with no significant differences among groups (P > 0.1). The duration of the fattening period averaged 114 d, slaughter age 157 d, and carcass weight 122 kg. The average daily weight gain (ADG) was highest in the control group straw (1.35 kg), and lowest in the hay group (1.22 kg, P < 0.01). The number of carcasses classified as C, H, and T (very high to medium quality) was lower in the hay group compared to straw (P < 0.01). No significant differences between groups were found in meat color (P > 0.1): 73 % of the carcasses were assessed as pale (267/364), 18 % as pink (66/364), and 9 % (31/364) as red. The results reveal that whole-plant corn pellets are most consistent with an optimal result combining the calves' health and fattening performance. Therefore, it can be recommended as an additional solid feed for veal calves under Swiss conditions.
Resumo:
Radon plays an important role for human exposure to natural sources of ionizing radiation. The aim of this article is to compare two approaches to estimate mean radon exposure in the Swiss population: model-based predictions at individual level and measurement-based predictions based on measurements aggregated at municipality level. A nationwide model was used to predict radon levels in each household and for each individual based on the corresponding tectonic unit, building age, building type, soil texture, degree of urbanization, and floor. Measurement-based predictions were carried out within a health impact assessment on residential radon and lung cancer. Mean measured radon levels were corrected for the average floor distribution and weighted with population size of each municipality. Model-based predictions yielded a mean radon exposure of the Swiss population of 84.1 Bq/m(3) . Measurement-based predictions yielded an average exposure of 78 Bq/m(3) . This study demonstrates that the model- and the measurement-based predictions provided similar results. The advantage of the measurement-based approach is its simplicity, which is sufficient for assessing exposure distribution in a population. The model-based approach allows predicting radon levels at specific sites, which is needed in an epidemiological study, and the results do not depend on how the measurement sites have been selected.
Resumo:
Human embryonic kidney cells 293 (HEK293) are widely used as cellular heterologous expression systems to study transfected ion channels. This work characterizes the endogenous expression of TRPM4 channels in HEK293 cells. TRPM4 is an intracellular Ca(2+)-activated non-selective cationic channel expressed in many cell types. Western blot analyses have revealed the endogenous expression of TRPM4. Single channel 22pS conductance with a linear current-voltage relationship was observed using the inside-out patch clamp configuration in the presence of intracellular Ca(2+). The channels were permeable to the monovalent cations Na(+) and K(+), but not to Ca(2+). The open probability was voltage-dependent, being higher at positive potentials. Using the whole-cell patch clamp "ruptured patch" configuration, the amplitude of the intracellular Ca(2+)-activated macroscopic current was dependent on time after patch rupture. Initial transient activation followed by a steady-increase reaching a plateau phase was observed. Biophysical analyses of the macroscopic current showed common properties with those from HEK293 cells stably transfected with human TRPM4b, with the exception of current time course and Ca(2+) sensitivity. The endogenous macroscopic current reached the plateau faster and required 61.9±3.5μM Ca(2+) to be half-maximally activated versus 84.2±1.5μM for the transfected current. The pharmacological properties, however, were similar in both conditions. One hundred μM of flufenamic acid and 9-phenanthrol strongly inhibited the endogenous current. Altogether, the data demonstrate the expression of endogenous TRMP4 channels in HEK293 cells. This observation should be taken into account when using this cell line to study TRPM4 or other types of Ca(2+)-activated channels.
Resumo:
AIM: To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV) training to identify possible explanations for preventive effects against musculoskeletal disorders. METHODS: Twenty-three healthy, female students participated in this quasi-experimental pilot study. Acute physiological and psychological effects of SR-WBV training were examined using electromyography of descending trapezius (TD) muscle, heart rate variability (HRV), different skin parameters (temperature, redness and blood flow) and self-report questionnaires. All subjects conducted a sham SR-WBV training at a low intensity (2 Hz with noise level 0) and a verum SR-WBV training at a higher intensity (6 Hz with noise level 4). They were tested before, during and after the training. Conclusions were drawn on the basis of analysis of variance. RESULTS: Twenty-three healthy, female students participated in this study (age = 22.4 ± 2.1 years; body mass index = 21.6 ± 2.2 kg/m2). Muscular activity of the TD and energy expenditure rose during verum SR-WBV compared to baseline and sham SR-WBV (all P < 0.05). Muscular relaxation after verum SR-WBV was higher than at baseline and after sham SR-WBV (all P < 0.05). During verum SR-WBV the levels of HRV were similar to those observed during sham SR-WBV. The same applies for most of the skin characteristics, while microcirculation of the skin of the middle back was higher during verum compared to sham SR-WBV (P < 0.001). Skin redness showed significant changes over the three measurement points only in the middle back area (P = 0.022). There was a significant rise from baseline to verum SR-WBV (0.86 ± 0.25 perfusion units; P = 0.008). The self-reported chronic pain grade indicators of pain, stiffness, well-being, and muscle relaxation showed a mixed pattern across conditions. Muscle and joint stiffness (P = 0.018) and muscular relaxation did significantly change from baseline to different conditions of SR-WBV (P < 0.001). Moreover, muscle relaxation after verum SR-WBV was higher than after sham SR-WBV (P < 0.05). CONCLUSION: Verum SR-WBV stimulated musculoskeletal activity in young healthy individuals while cardiovascular activation was low. Training of musculoskeletal capacity and immediate increase in musculoskeletal relaxation are potential mediators of pain reduction in preventive trials.
Resumo:
The single-celled protozoan Trypanosoma brucei spp. is the causative agent of human African trypanosomiasis and nagana in cattle. Quantitative proteomics for the first time allowed for the characterization of the proteome from several different life stages of the parasite (1-3). To achieve this, stable isotope labeling by amino acids in cell culture (SILAC; (4)) was adapted to T. brucei spp. cultures. T. brucei cells grown in standard media with dialyzed fetal calf serum containing heavy isotope-labeled amino acids (arginine and lysine) show efficient incorporation of the labeled amino acids into the whole cell proteome (8-12 divisions) and no detectable amino acid conversions. The method can be applied to both of the major life stages of the parasite and in combination with RNAi or gene knock-out approaches.
Resumo:
Despite the evidence for a genetic predisposition to develop equine sarcoids (ES), no whole genome scan for ES has been performed to date. The objective of this explorative study was to identify chromosome regions associated with ES. The studied population was comprised of two half-sibling sire families, involving a total of 222 horses. Twenty-six of these horses were affected with ES. All horses had been previously genotyped with 315 microsatellite markers. Quantitative trait locus (QTL) signals were suggested where the F statistic exceeded chromosome-wide significance at P < 0.05. The QTL analyses revealed significant signals reaching P < 0.05 on equine chromosome (ECA) 20, 23 and 25, suggesting a polygenic character for this trait. The candidate regions identified on ECA 20, 23 and 25 include genes regulating virus replication and host immune response. Further investigation of the chromosome regions associated with ES and of genes potentially responsible for the development of ES could form the basis for early identification of susceptible animals, breeding selection or the development of new therapeutic targets.
Resumo:
The Whole Atmosphere Community Climate Model (WACCM) is utilised to study the daily ozone cycle and underlying photochemical and dynamical processes. The analysis is focused on the daily ozone cycle in the middle stratosphere at 5 hPa where satellite-based trend estimates of stratospheric ozone are most biased by diurnal sampling effects and drifting satellite orbits. The simulated ozone cycle shows a minimum after sunrise and a maximum in the late afternoon. Further, a seasonal variation of the daily ozone cycle in the stratosphere was found. Depending on season and latitude, the peak-to-valley difference of the daily ozone cycle varies mostly between 3 and 5% (0.4 ppmv) with respect to the midnight ozone volume mixing ratio. The maximal variation of 15% (0.8 ppmv) is found at the polar circle in summer. The global pattern of the strength of the daily ozone cycle is mainly governed by the solar zenith angle and the sunshine duration. In addition, we find synoptic-scale variations in the strength of the daily ozone cycle. These variations are often anti-correlated to regional temperature anomalies and are due to the temperature dependence of the rate coefficients k2 and k3 of the Chapman cycle reactions. Further, the NOx catalytic cycle counteracts the accumulation of ozone during daytime and leads to an anti-correlation between anomalies in NOx and the strength of the daily ozone cycle. Similarly, ozone recombines with atomic oxygen which leads to an anti-correlation between anomalies in ozone abundance and the strength of the daily ozone cycle. At higher latitudes, an increase of the westerly (easterly) wind cause a decrease (increase) in the sunshine duration of an air parcel leading to a weaker (stronger) daily ozone cycle.
Resumo:
Delta-9-tetrahydrocannabinolic acid A (THCA-A) is the biosynthetic precursor of delta-9-tetrahydrocannabinol (THC) in cannabis plants, and has no psychotropic effects. THCA-A can be detected in blood and urine, and several metabolites have been identified. THCA-A was also shown to be incorporated in hair by side stream smoke to a minor extent, but incorporation via blood stream or sweat seems unlikely. The detection of THCA-A in biological fluids may serve as a marker for differentiating between the intake of prescribed THC medication – containing only pure THC – and cannabis products containing THC besides THC-acid A and other cannabinoids. However, the knowledge about its usefulness in forensic cases is very limited. The aim of the present work was the development of a reliable method for THCA-A determination in human blood or plasma using LC–MS/MS and application to cases of driving under the influence of drugs. Fifty eight (58) authentic whole blood and the respective plasma samples were collected from drivers suspected of driving under the influence of cannabis from the region of Bern (Switzerland). Samples were first tested for THC, 11-OH-THC and THC-COOH, and then additionally for THCA-A. For this purpose, the existing LC–MS/MS method was modified and validated, and found to be selective and linear over a range of 1.0 to 200 ng/mL (the correlation coefficients were above 0.9980 in all validation runs). Limit of detection (LOD) and limit of quantification (LOQ) were 0.3 ng/mL and 1.0 ng/mL respectively. Intra- and inter-assay accuracy were equal or better than 90% and intra- and inter-assay precision were equal or better than 11.1%. The mean extraction efficiencies were satisfactory being equal or higher than 85.4%. THCA-A was stable in whole blood samples after 3 freeze/thaw cycles and storage at 4 °C for 7 days. Re-injection (autosampler) stability was also satisfactory. THC was present in all blood samples with levels ranging from 0.7 to 51 ng/mL. THCA-A concentrations ranged from 1.0 to 496 ng/mL in blood samples and from 1.4 to 824 ng/mL in plasma samples. The plasma:blood partition coefficient had a mean value of 1.7 (±0.21, SD). No correlation was found between the degree of intoxication or impairment stated in the police protocols or reports of medical examinations and the detected THCA-A-concentration in blood.
Resumo:
BACKGROUND Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. METHODOLOGY/PRINCIPAL FINDINGS We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. CONCLUSIONS/SIGNIFICANCE Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.
Resumo:
The objective of the present study was to assess the validity of barometric whole-body plethysmography (BWBP), to establish reference values, and to standardise a bronchoprovocative test to investigate airway responsiveness using BWBP in healthy dogs. BWBP measurements were obtained from six healthy beagle dogs using different protocols: (1) during three consecutive periods (3.5min each) in two morning and two evening sessions; (2) before and after administration of two protocols of sedation; (3) before and after nebulisation of saline and increasing concentrations of carbachol and histamine both in conscious dogs and in dogs under both protocols of sedation. Enhanced pause (PENH) was used as index of bronchoconstriction. Basal BWBP measurements were also obtained in 22 healthy dogs of different breeds, age and weight. No significant influence of either time spent in the chamber or daytime was found for most respiratory variables but a significant dog effect was detected for most variables. A significant body weight effect was found on tidal volume and peak flow values (P<0.05). Response to carbachol was not reproducible and always associated with side effects. Nebulisation of histamine induced a significant increase in respiratory rate, peak expiratory flow, peak expiratory flow/peak inspiratory flow ratio and PENH (P<0.05). The response was reproduced in each dog at different concentrations of histamine. Sedation with acepromazine+buprenorphine had little influence on basal measurements and did not change the results of histamine challenge. It was concluded that BWBP is a safe, non invasive and reliable technique of investigation of lung function in dogs which provides new opportunities to characterise respiratory status, to evaluate airway hyperresponsiveness and to assess therapeutic interventions.
Resumo:
BACKGROUND Whole genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single nucleotide polymorphism (SNP)-typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. METHODS Based on genome sequences of three historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1,642 patient isolates, and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. RESULTS We identified 68 patients associated with the outbreak strain. Most were diagnosed in 1991-1995, but cases were observed until 2011. Two thirds belonged to the homeless and substance abuser milieu. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into three sub-clusters. Isolates from patients with confirmed epidemiological links differed by 0-11 SNPs. CONCLUSIONS Strain-specific SNP-genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real-time and at high resolution.