90 resultados para variance shadow maps
Resumo:
We propose a nonparametric variance estimator when ranked set sampling (RSS) and judgment post stratification (JPS) are applied by measuring a concomitant variable. Our proposed estimator is obtained by conditioning on observed concomitant values and using nonparametric kernel regression.
Resumo:
Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.
Resumo:
The new computing paradigm known as cognitive computing attempts to imitate the human capabilities of learning, problem solving, and considering things in context. To do so, an application (a cognitive system) must learn from its environment (e.g., by interacting with various interfaces). These interfaces can run the gamut from sensors to humans to databases. Accessing data through such interfaces allows the system to conduct cognitive tasks that can support humans in decision-making or problem-solving processes. Cognitive systems can be integrated into various domains (e.g., medicine or insurance). For example, a cognitive system in cities can collect data, can learn from various data sources and can then attempt to connect these sources to provide real time optimizations of subsystems within the city (e.g., the transportation system). In this study, we provide a methodology for integrating a cognitive system that allows data to be verbalized, making the causalities and hypotheses generated from the cognitive system more understandable to humans. We abstract a city subsystem—passenger flow for a taxi company—by applying fuzzy cognitive maps (FCMs). FCMs can be used as a mathematical tool for modeling complex systems built by directed graphs with concepts (e.g., policies, events, and/or domains) as nodes and causalities as edges. As a verbalization technique we introduce the restriction-centered theory of reasoning (RCT). RCT addresses the imprecision inherent in language by introducing restrictions. Using this underlying combinatorial design, our approach can handle large data sets from complex systems and make the output understandable to humans.
Resumo:
This paper describes a general workflow for the registration of terrestrial radar interferometric data with 3D point clouds derived from terrestrial photogrammetry and structure from motion. After the determination of intrinsic and extrinsic orientation parameters, data obtained by terrestrial radar interferometry were projected on point clouds and then on the initial photographs. Visualisation of slope deformation measurements on photographs provides an easily understandable and distributable information product, especially of inaccessible target areas such as steep rock walls or in rockfall run-out zones. The suitability and error propagation of the referencing steps and final visualisation of four approaches are compared: (a) the classic approach using a metric camera and stereo-image photogrammetry; (b) images acquired with a metric camera, automatically processed using structure from motion; (c) images acquired with a digital compact camera, processed with structure from motion; and (d) a markerless approach, using images acquired with a digital compact camera using structure from motion without artificial ground control points. The usability of the completely markerless approach for the visualisation of high-resolution radar interferometry assists the production of visualisation products for interpretation.