81 resultados para transporter-encoding gene
Resumo:
For the efficient translocation of organic nitrogen, small peptides of two to three amino acids are posited as an important alternative to amino acids. A new transporter mediating the uptake of di- and tripeptides was isolated from Arabidopsis thaliana by heterologous complementation of a peptide transport-deficient Saccharomyces cerevisiae mutant. AtPTR1 mediated growth of S. cerevisiae cells on different di- and tripeptides and caused sensitivity to the phytotoxin phaseolotoxin. The spectrum of substrates recognized by AtPTR1 was determined in Xenopus laevis oocytes injected with AtPTR1 cRNA under voltage clamp conditions. AtPTR1 not only recognized a broad spectrum of di- and tripeptides, but also substrates lacking a peptide bond. However, amino acids, omega-amino fatty acids or peptides with more than three amino acid residues did not interact with AtPTR1. At pH 5.5 AtPTR1 had an apparent lower affinity (K-0.5 = 416 mum) for Ala-Asp compared with Ala-Ala (K-0.5 = 54 mum) and Ala-Lys (K-0.5 = 112 mum). Transient expression of AtPTR1/GFP fusion proteins in tobacco protoplasts showed that AtPTR1 is localized at the plasma membrane. In addition, transgenic plants expressing the beta-glucuronidase (uidA) gene under control of the AtPTR1 promoter demonstrated expression in the vascular tissue throughout the plant, indicative of a role in long-distance transport of di- and tripeptides.
Resumo:
Riemerella anatipestifer, the causative agent of septicemia anserum exsudativa (also called new duckling disease), belongs to the family Flavobacteriaceae of gram-negative bacteria. We determined the DNA sequences of the rrs genes encoding the 16S rRNAs of four R. anatipestifer strains by directly sequencing PCR-amplified rrs genes. A sequence similarity analysis confirmed the phylogenetic position of R. anatipestifer in the family Flavobacteriaceae in rRNA superfamily V and allowed fine mapping of R. anatipestifer on a separate rRNA branch comprising the most closely related species, Bergeyella zoohelcum, as well as Chryseobacterium balustinum, Chryseobacterium indologenes, and Chryseobacterium gleum. The sequences of the rrs genes of the four R. anatipestifer strains varied between 0.5 and 1.0%, but all of the strains occupied the same position on the phylogenetic tree. In general, differences in rrs genes were observed among R. anatipestifer strains, even within a given serotype, as shown by restriction fragment length polymorphism of PCR-amplified rrs genes.
Resumo:
With the aim of characterizing specific immunogenic proteins of Mycoplasma mycoides subsp. mycoides small colony (SC) type, the aetiological agent of contagious bovine pleuropneumonia, a gene encoding a major immunogenic protein of 72 kDa named P72 was cloned and expressed in Escherichia coli. The expressed protein was of the same apparent molecular mass as that produced by the parent strain. The predicted molecular mass of P72, based on the DNA-deduced amino acid sequence, was 61.118 kDa, significantly lower than the apparent molecular mass of endogenous or recombinant P72 on SDS-PAGE. Analysis of the amino acid sequence revealed a typical prokaryotic signal peptidase II-membrane lipoprotein lipid attachment site and a transmembrane structure domain in the leader sequence at the amino-terminal end of the protein. P72 was shown to be a lipoprotein and its surface location was confirmed by trypsin treatment of whole cells. An unassigned gene encoding a peptide with some similarity to P72 was found on the genome sequence of M. capricolum subsp. capricolum but not on that of Mycoplasma genitalium. The P72 gene was detected in 11/11 M. mycoides subsp. mycoides SC strains. Antiserum against recombinant P72 reacted strongly with 12/12 strains of M. mycoides subsp. mycoides SC, weakly with Mycoplasma bovine group 7 strain PG50, but not with other members of the 'mycoides cluster' or closely related mycoplasmas. Cows experimentally contact-infected with M. mycoides subsp. mycoides SC developed a humoral response against P72 within 35 d. P72 is a specific antigenic membrane lipoprotein of M. mycoides subsp. mycoides SC with potential for use in development of diagnostic reagents. It seems to belong to a family of lipoproteins of the "mycoides cluster'.
Resumo:
Hereditary footpad hyperkeratosis (HFH) represents a palmoplantar hyperkeratosis, which is inherited as a monogenic autosomal recessive trait in several dog breeds, such as e.g. Kromfohrländer and Irish Terriers. We performed genome-wide association studies (GWAS) in both breeds. In Kromfohrländer we obtained a single strong association signal on chromosome 5 (p(raw) = 1.0×10(-13)) using 13 HFH cases and 29 controls. The association signal replicated in an independent cohort of Irish Terriers with 10 cases and 21 controls (p(raw) = 6.9×10(-10)). The analysis of shared haplotypes among the combined Kromfohrländer and Irish Terrier cases defined a critical interval of 611 kb with 13 predicted genes. We re-sequenced the genome of one affected Kromfohrländer at 23.5× coverage. The comparison of the sequence data with 46 genomes of non-affected dogs from other breeds revealed a single private non-synonymous variant in the critical interval with respect to the reference genome assembly. The variant is a missense variant (c.155G>C) in the FAM83G gene encoding a protein with largely unknown function. It is predicted to change an evolutionary conserved arginine into a proline residue (p.R52P). We genotyped this variant in a larger cohort of dogs and found perfect association with the HFH phenotype. We further studied the clinical and histopathological alterations in the epidermis in vivo. Affected dogs show a moderate to severe orthokeratotic hyperplasia of the palmoplantar epidermis. Thus, our data provide the first evidence that FAM83G has an essential role for maintaining the integrity of the palmoplantar epidermis.
Resumo:
We have cloned and sequenced a 10.22-kb fragment of the genomic locus of the porcine tumor necrosis factor-encoding genes, TNF-alpha and TNF-beta. A liver genomic DNA library, partially digested with Sau3AI, was cloned into the phage lambda EMBL4 and screened with a porcine TNF-alpha cDNA probe. Analysis showed that both the TNF-alpha and TNF-beta genes were present on the cloned fragment. In addition, the cloned fragment contained about 2 kb of repetitive sequences 5' to the TNF-beta gene. The TNF genes are arranged in a tandem repeat, as is the case for the human, mouse and rabbit TNF genes. The comparison of both genes with their human homologues displayed a considerable degree of conservation (80%), suggesting an equal evolution rate.
Resumo:
Dandy-Walker-like malformation (DWLM) is the result of aberrant brain development and mainly characterized by cerebellar hypoplasia. DWLM affected dogs display a non-progressive cerebellar ataxia. Several DWLM cases were recently observed in the Eurasier dog breed, which strongly suggested a monogenic autosomal recessive inheritance in this breed. We performed a genome-wide association study (GWAS) with 9 cases and 11 controls and found the best association of DWLM with markers on chromosome 1. Subsequent homozygosity mapping confirmed that all 9 cases were homozygous for a shared haplotype in this region, which delineated a critical interval of 3.35 Mb. We sequenced the genome of an affected Eurasier and compared it with the Boxer reference genome and 47 control genomes of dogs from other breeds. This analysis revealed 4 private non-synonymous variants in the critical interval of the affected Eurasier. We genotyped these variants in additional dogs and found perfect association for only one of these variants, a single base deletion in the VLDLR gene encoding the very low density lipoprotein receptor. This variant, VLDLR:c.1713delC is predicted to cause a frameshift and premature stop codon (p.W572Gfs*10). Variants in the VLDLR gene have been shown to cause congenital cerebellar ataxia and mental retardation in human patients and Vldlr knockout mice also display an ataxia phenotype. Our combined genetic data together with the functional knowledge on the VLDLR gene from other species thus strongly suggest that VLDLR:c.1713delC is indeed causing DWLM in Eurasier dogs.
Resumo:
BACKGROUND Among other mismatches between human and pig, incompatibilities in the blood coagulation systems hamper the xenotransplantation of vascularized organs. The provision of the porcine endothelium with human thrombomodulin (hTM) is hypothesized to overcome the impaired activation of protein C by a heterodimer consisting of human thrombin and porcine TM. METHODS We evaluated regulatory regions of the THBD gene, optimized vectors for transgene expression, and generated hTM expressing pigs by somatic cell nuclear transfer. Genetically modified pigs were characterized at the molecular, cellular, histological, and physiological levels. RESULTS A 7.6-kb fragment containing the entire upstream region of the porcine THBD gene was found to drive a high expression in a porcine endothelial cell line and was therefore used to control hTM expression in transgenic pigs. The abundance of hTM was restricted to the endothelium, according to the predicted pattern, and the transgene expression of hTM was stably inherited to the offspring. When endothelial cells from pigs carrying the hTM transgene--either alone or in combination with an aGalTKO and a transgene encoding the human CD46-were tested in a coagulation assay with human whole blood, the clotting time was increased three- to four-fold (P<0.001) compared to wild-type and aGalTKO/CD46 transgenic endothelial cells. This, for the first time, demonstrated the anticoagulant properties of hTM on porcine endothelial cells in a human whole blood assay. CONCLUSIONS The biological efficacy of hTM suggests that the (multi-)transgenic donor pigs described here have the potential to overcome coagulation incompatibilities in pig-to-primate xenotransplantation.
Resumo:
BACKGROUND Heritable forms of epidermolysis bullosa (EB) constitute a heterogeneous group of skin disorders of genetic aetiology that are characterised by skin and mucous membrane blistering and ulceration in response to even minor trauma. Here we report the occurrence of EB in three Danish Hereford cattle from one herd. RESULTS Two of the animals were necropsied and showed oral mucosal blistering, skin ulcerations and partly loss of horn on the claws. Lesions were histologically characterized by subepidermal blisters and ulcers. Analysis of the family tree indicated that inbreeding and the transmission of a single recessive mutation from a common ancestor could be causative. We performed whole genome sequencing of one affected calf and searched all coding DNA variants. Thereby, we detected a homozygous 2.4 kb deletion encompassing the first exon of the LAMC2 gene, encoding for laminin gamma 2 protein. This loss of function mutation completely removes the start codon of this gene and is therefore predicted to be completely disruptive. The deletion co-segregates with the EB phenotype in the family and absent in normal cattle of various breeds. Verifying the homozygous private variants present in candidate genes allowed us to quickly identify the causative mutation and contribute to the final diagnosis of junctional EB in Hereford cattle. CONCLUSIONS Our investigation confirms the known role of laminin gamma 2 in EB aetiology and shows the importance of whole genome sequencing in the analysis of rare diseases in livestock.
Resumo:
A lipidomic and metabolomic investigation of serum and liver from mice was performed to gain insight into the tumor suppressor gene Hint1. A major reprogramming of lipid homeostasis was found in both serum and liver of Hint1-null (Hint(-/-)) mice, with significant changes in the levels of many lipid molecules, as compared with gender-, age-, and strain-matched WT mice. In the Hint1(-/-) mice, serum total and esterified cholesterol were reduced 2.5-fold, and lysophosphatidylcholines (LPCs) and lysophosphatidic acids were 10-fold elevated in serum, with a corresponding fall in phosphatidylcholines (PCs). In the liver, MUFAs and PUFAs, including arachidonic acid (AA) and its metabolic precursors, were also raised, as was mRNA encoding enzymes involved in AA de novo synthesis. There was also a significant 50% increase in hepatic macrophages in the Hint1(-/-) mice. Several hepatic ceramides and acylcarnitines were decreased in the livers of Hint1(-/-) mice. The changes in serum LPCs and PCs were neither related to hepatic phospholipase A2 activity nor to mRNAs encoding lysophosphatidylcholine acetyltransferases 1-4. The lipidomic phenotype of the Hint1(-/-) mouse revealed decreased inflammatory eicosanoids with elevated proliferative mediators that, combined with decreased ceramide apoptosis signaling molecules, may contribute to the tumor suppressor activity of Hint1.
Resumo:
Congenital pseudomyotonia in Chianina cattle is a muscle function disorder very similar to that of Brody disease in humans. Mutations in the human ATP2A1 gene, encoding SERCA1, cause Brody myopathy. The analysis of the collected Chianina pedigree data suggested monogenic autosomal recessive inheritance and revealed that all 17 affected individuals traced back to a single founder. A deficiency of SERCA1 function in skeletal muscle of pseudomyotonia affected Chianina cattle was observed as SERCA1 activity in affected animals was decreased by about 70%. Linkage analysis showed that the mutation was located in the ATP2A1 gene region on BTA25 and subsequent mutation analysis of the ATP2A1 exons revealed a perfectly associated missense mutation in exon 6 (c.491G>A) leading to a p.Arg164His substitution. Arg164 represents a functionally important and strongly conserved residue of SERCA1. This study provides a suitable large animal model for human Brody disease.
Resumo:
The major multidrug transporter P-glycoprotein (Pgp) contributes to the barrier function of several tissues and organs, including the brain. In a subpopulation of Collies and seven further dog breeds, a 4 base pair deletion has been described in the Pgp-encoding MDR1 gene. This deletion results in the absence of a functional form of Pgp and loss of its protective function. Severe intoxication with the Pgp substrate ivermectin has been attributed to the genetically determined lack of Pgp. An allele-specific polymerase chain reaction (PCR)-based screening method has been developed to detect the mutant allele and to determine if a dog is homozygous or heterozygous for the mutation. Based on this validation, the allele-specific PCR proved to be a robust, reproducible and specific tool, allowing rapid determination of the MDR1 genotype of dogs of at risk breeds using blood samples or buccal swabs.
Resumo:
The hairpin structure at the 3' end of animal histone mRNAs controls histone RNA 3' processing, nucleocytoplasmic transport, translation and stability of histone mRNA. Functionally overlapping, if not identical, proteins binding to the histone RNA hairpin have been identified in nuclear and polysomal extracts. Our own results indicated that these hairpin binding proteins (HBPs) bind their target RNA as monomers and that the resulting ribonucleoprotein complexes are extremely stable. These features prompted us to select for HBP-encoding human cDNAs by RNA-mediated three-hybrid selection in Saccharomyces cerevesiae. Whole cell extract from one selected clone contained a Gal4 fusion protein that interacted with histone hairpin RNA in a sequence- and structure-specific manner similar to a fraction enriched for bovine HBP, indicating that the cDNA encoded HBP. DNA sequence analysis revealed that the coding sequence did not contain any known RNA binding motifs. The HBP gene is composed of eight exons covering 19.5 kb on the short arm of chromosome 4. Translation of the HBP open reading frame in vitro produced a 43 kDa protein with RNA binding specificity identical to murine or bovine HBP. In addition, recombinant HBP expressed in S. cerevisiae was functional in histone pre-mRNA processing, confirming that we have indeed identified the human HBP gene.
Resumo:
AIMS To assess the association of DPYS and UPB1 genetic variation, encoding the catabolic enzymes downstream of dihydropyrimidine dehydrogenase, with early-onset toxicity from fluoropyrimidine-based chemotherapy. PATIENTS & METHODS The coding and exon-flanking regions of both genes were sequenced in a discovery subset (164 patients). Candidate variants were genotyped in the full cohort of 514 patients. RESULTS & CONCLUSIONS Novel rare deleterious variants in DPYS (c.253C > T and c.1217G > A) were detected once each in toxicity cases and may explain the occurrence of severe toxicity in individual patients, and associations of common variants in DPYS (c.1-1T > C: padjusted = 0.003; OR = 2.53; 95% CI: 1.39-4.62, and c.265-58T > C: padjusted = 0.039; OR = 0.61; 95% CI: 0.38-0.97) with 5-fluorouracil toxicity were replicated.
Resumo:
Classical swine fever virus replicon particles (CSF-VRP) deficient for E(rns) were evaluated as a non-transmissible marker vaccine. A cDNA clone of CSFV strain Alfort/187 was used to obtain a replication-competent mutant genome (replicon) lacking the sequence encoding the 227 amino acids of the glycoprotein E(rns) (A187delE(rns)). For packaging of A187delE(rns) into virus particles, porcine kidney cell lines constitutively expressing E(rns) of CSFV were established. The rescued VRP were infectious in cell culture but did not yield infectious progeny virus. Single intradermal vaccination of two pigs with 10(7) TCID(50) of VRP A187delE(rns) elicited neutralizing antibodies, anti-E2 antibodies, and cellular immune responses determined by an increase of IFN-gamma producing cells. No anti-E(rns) antibodies were detected in the vaccinees confirming that this vaccine represents a negative marker vaccine allowing differentiation between infected and vaccinated animals. The two pigs were protected against lethal challenge with the highly virulent CSFV strain Eystrup. In contrast, oral immunization resulted in only partial protection, and neither CSFV-specific antibodies nor stimulated T-cells were found before challenge. These data represent a good basis for more extended vaccination/challenge trials including larger numbers of animals as well as more thorough analysis of virus shedding using sentinel animals to monitor horizontal spread of the challenge virus.
Resumo:
Since the immunochemical identification of the bullous pemphigoid antigen 230 (BP230) as one of the major target autoantigens of bullous pemphigoid (BP) in 1981, our understanding of this protein has significantly increased. Cloning of its gene, development and characterization of animal models with engineered gene mutations or spontaneous mouse mutations have revealed an unexpected complexity of the gene encoding BP230. The latter, now called dystonin (DST), is composed of at least 100 exons and gives rise to three major isoforms, an epithelial, a neuronal and a muscular isoform, named BPAG1e (corresponding to the original BP230), BPAG1a and BPAG1b, respectively. The various BPAG1 isoforms play a key role in fundamental processes, such as cell adhesion, cytoskeleton organization, and cell migration. Genetic defects of BPAG1 isoforms are the culprits of epidermolysis bullosa and complex, devastating neurological diseases. In this review, we summarize recent advances of our knowledge about several BPAG1 isoforms, their role in various biological processes and in human diseases.