168 resultados para spine plasticity
Resumo:
Vascular endothelial growth factor (VEGF) has potent angiogenic and neuroprotective effects in the ischemic brain. Its effect on axonal plasticity and neurological recovery in the post-acute stroke phase was unknown. Using behavioral tests combined with anterograde tract tracing studies and with immunohistochemical and molecular biological experiments, we examined effects of a delayed i.c.v. delivery of recombinant human VEGF(165), starting 3 days after stroke, on functional neurological recovery, corticorubral plasticity and inflammatory brain responses in mice submitted to 30 min of middle cerebral artery occlusion. We herein show that the slowly progressive functional improvements of motor grip strength and coordination, which are induced by VEGF, are accompanied by enhanced sprouting of contralesional corticorubral fibres that branched off the pyramidal tract in order to cross the midline and innervate the ipsilesional parvocellular red nucleus. Infiltrates of CD45+ leukocytes were noticed in the ischemic striatum of vehicle-treated mice that closely corresponded to areas exhibiting Iba-1+ activated microglia. VEGF attenuated the CD45+ leukocyte infiltrates at 14 but not 30 days post ischemia and diminished the microglial activation. Notably, the VEGF-induced anti-inflammatory effect of VEGF was associated with a downregulation of a broad set of inflammatory cytokines and chemokines in both brain hemispheres. These data suggest a link between VEGF's immunosuppressive and plasticity-promoting actions that may be important for successful brain remodeling. Accordingly, growth factors with anti-inflammatory action may be promising therapeutics in the post-acute stroke phase.
Resumo:
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain.
Resumo:
Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue. Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup. A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.
Resumo:
Monostotic fibrous dysplasia of the spine is a rare entity. Only 26 cases, of which 11 were located in the cervical spine, are to be found in the literature. We report a 56-year-old male patient with cervicobrachialgia of half year's duration. Radiographs showed a diffuse destruction of the vertebral body and the spinous process of C4. A biopsy of the spinous process confirmed histopathologically a fibrous dysplasia. Due to minor symptoms, no surgical treatment was performed or is planned unless in case of increasing pain, an acute instability or neurological symptoms.
Resumo:
OBJECTIVE: The purpose of this study was to determine if the thoracic vertebral elements are altered in patients with Marfan's syndrome. MATERIALS AND METHODS: Thirty patients underwent helical CT of the thorax because of suspected thoracic aortic dilatation and acute dissection. Thirteen had Marfan's syndrome and 17 did not. Two reviewers, unaware of the final diagnosis, evaluated the images by consensus for laminar thickness, foraminal width, dural sac ratios, and vertebral scalloping for T2-T12. RESULTS: At T9-T12, dural sac ratios at the midcorpus level (p = 0.031) and foraminal width (p = 0.0124) were significantly greater in the patients with Marfan's syndrome than in the patients without. Dural sac ratios at lower endplate levels (p = 0.0685), laminar thickness (p = 0.951), and vertebral scalloping (p = 0.24) were not significantly greater in the patients with Marfan's syndrome than in the patients without. CONCLUSION: Because the phenotypic expression of Marfan's syndrome is variable, information on the spine from thoracic studies in combination with major criteria may be helpful clinically.
Resumo:
In the discussion about the rationale for spine registries, two basic questions have to be answered. The first one deals with the value of orthopaedic registries per se, considering them as observational studies and comparing the evidence they generate with that of randomised controlled trials. The second question asks if the need for registries in spine surgery is similar to that in the arthroplasty sector. The widely held view that randomised controlled trials are the 'gold standard' for evaluation and that observational methods have little or no value ignores the limitations of randomised trials. They may prove unnecessary, inappropriate, impossible, or inadequate. In addition, the external validity and hence the ability to make generalisations about the results of randomised trials is often low. Therefore, the false conflict between those who advocate randomised trials in all situations and those who believe observational data provide sufficient evidence needs to be replaced with mutual recognition of their complementary roles. The fact that many surgical techniques or technologies were introduced into the field of spine surgery without randomised trials or prospective cohort comparisons makes obvious an even increased need for spine registries compared to joint arthroplasty. An essential methodological prerequisite for a registry is a common terminology for reporting results and a sophisticated technology that networks all participants so that one central data pool is created and accessed. Recognising this need, the Spine Society of Europe has researched and developed Spine Tango, the first European spine registry, which can be accessed under www.eurospine.org.
Resumo:
2D-3D registration of pre-operative 3D volumetric data with a series of calibrated and undistorted intra-operative 2D projection images has shown great potential in CT-based surgical navigation because it obviates the invasive procedure of the conventional registration methods. In this study, a recently introduced spline-based multi-resolution 2D-3D image registration algorithm has been adapted together with a novel least-squares normalized pattern intensity (LSNPI) similarity measure for image guided minimally invasive spine surgery. A phantom and a cadaver together with their respective ground truths were specially designed to experimentally assess possible factors that may affect the robustness, accuracy, or efficiency of the registration. Our experiments have shown that it is feasible for the assessed 2D-3D registration algorithm to achieve sub-millimeter accuracy in a realistic setup in less than one minute.