83 resultados para social responses to elderly.
Resumo:
High-resolution pollen analyses made on the same samples on which the ratios of oxygen isotopes were measured that provided the time scale and a temperature proxy after correlation to NorthGRIP. (1) A primary succession: The vegetation responded to the rapid rise of temperatures around 14,685 yr BP, with a primary succession on a decadal to centennial time scale. The succession between ca 15,600 and 13,000 yr BP included: (1.1.) The replacement of shrub-tundra by woodland of Juniperus and tree birch (around 14,665 yr BP) (1.2.) The response of Juniperus pollen to the shift in oxygen isotopes in less than 20 yr, (1.3.) A sequence of population increases of Hippophaë rhamnoides (ca 14,600 yr BP), Salix spp. (ca 14,600 yr BP), Betula trees (ca.14,480 yr BP), Populus cf. tremula (ca. 14,300 yr BP), and Pinus cf. sylvestris (ca. 13,830 yr BP). (2) Biological processes: Plants responded to the rapid increase of summer temperatures on all organisational levels: (2.1) Individuals may have produced more pollen (e.g. Juniperus); (2.2) Populations increased or decreased (e.g. Juniperus, Betula, later Pinus), and (2.3) Populations changed their biogeographical range and may show migrational lags. (2.4) Plant communities changed in their composition because the species pools changed through immigration and (local) extinction. Some plant communities may have been without modern analogue.These mechanisms require increasing amounts of time. (2.5) Processes on the level of ecosystems, with species interactions, may involve various time scales. Besides competition and facilitation, nitrogen fixation is discussed. (3) The minor fluctuations of temperature during the Late-Glacial Interstadial, which are recorded in δ18O, resulted in only very minor changes in pollen during the Aegelsee Oscillation (Older Dryas biozone, GI-1d) and the Gerzensee Oscillation (GI-1b). (4) Biodiversity: The afforestation at the onset of Bølling coincided with a gradual increase of taxonomic diversity up to the time of the major Pinus expansion.
Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes
Resumo:
The gastrointestinal tract is heavily colonized with commensal microbes with the concentration of bacteria increasing longitudinally down the length of the intestine. Bacteria are also spatially distributed transversely from the epithelial surface to the intestinal lumen with the inner mucus layer normally void of bacteria. Maintenance of this equilibrium is extremely important for human health and, as the dominant immunoglobulin at mucosal sites, IgA influences mutualism between the host and its normal microbiota. In this review we focus on the links between immune and microbial geography of the mammalian intestinal tract.
Resumo:
A dose-response strategy may not only allow investigation of the impact of foods and nutrients on human health but may also reveal differences in the response of individuals to food ingestion based on their metabolic health status. In a randomized crossover study, we challenged 19 normal-weight (BMI: 20-25 kg/m(2)) and 18 obese (BMI: >30 kg/m(2)) men with 500, 1000, and 1500 kcal of a high-fat (HF) meal (60.5% energy from fat). Blood was taken at baseline and up to 6 h postprandially and analyzed for a range of metabolic, inflammatory, and hormonal variables, including plasma glucose, lipids, and C-reactive protein and serum insulin, glucagon-like peptide-1, interleukin-6 (IL-6), and endotoxin. Insulin was the only variable that could differentiate the postprandial response of normal-weight and obese participants at each of the 3 caloric doses. A significant response of the inflammatory marker IL-6 was only observed in the obese group after ingestion of the HF meal containing 1500 kcal [net incremental AUC (net iAUC) = 22.9 ± 6.8 pg/mL × 6 h, P = 0.002]. Furthermore, the net iAUC for triglycerides significantly increased from the 1000 to the 1500 kcal meal in the obese group (5.0 ± 0.5 mmol/L × 6 h vs. 6.0 ± 0.5 mmol/L × 6 h, P = 0.015) but not in the normal-weight group (4.3 ± 0.5 mmol/L × 6 h vs. 4.8 ± 0.5 mmol/L × 6 h, P = 0.31). We propose that caloric dose-response studies may contribute to a better understanding of the metabolic impact of food on the human organism. This study was registered at clinicaltrials.gov as NCT01446068.
Resumo:
To assess if tree age may modulate the main climatic drivers of radial growth, two relict Pinus nigra subsp. salzmannii populations (Maria, most xeric site; Magina, least xeric site) were sampled in southern Spain near the limits of the species range. Tree-ring width residual chronologies for two age groups (mature trees, age <= 100 years (minimum 40 years); old trees, age > 100 years) were built to evaluate their responses to climate by relating them to monthly precipitation and temperature and a drought index (DRI) using correlation and response functions. We found that drought is the main driver of growth of relict P. nigra populations, but differences between sites and age classes were also observed. First, growth in the most xeric site depends on the drought severity during the previous autumn and the spring of the year of tree-ring formation, whereas in the relatively more mesic site growth is mainly enhanced by warm and wet conditions in spring. Second, growth of mature trees responded more to drought severity than that of old trees. Our findings indicate that drought severity will mainly affect growth of relict P. nigra populations dominated by mature trees in xeric sites. This conclusion may also apply to similar mountain Mediterranean conifer relicts.
Resumo:
Existing evidence of plant phenological change to temperature increase demonstrates that the phenological responsiveness is greater at warmer locations and in early-season plant species. Explanations of these findings are scarce and not settled. Some studies suggest considering phenology as one functional trait within a plant's life history strategy. In this study, we adapt an existing phenological model to derive a generalized sensitivity in space (SpaceSens) model for calculating temperature sensitivity of spring plant phenophases across species and locations. The SpaceSens model have three parameters, including the temperature at the onset date of phenophases (Tp), base temperature threshold (Tb) and the length of period (L) used to calculate the mean temperature when performing regression analysis between phenology and temperature. A case study on first leaf date of 20 plant species from eastern China shows that the change of Tp and Tb among different species accounts for interspecific difference in temperature sensitivity. Moreover, lower Tp at lower latitude is the main reason why spring phenological responsiveness is greater there. These results suggest that spring phenophases of more responsive, early-season plants (especially in low latitude) will probably continue to diverge from the other late-season plants with temperatures warming in the future.
Resumo:
The paper discusses how Kenyan policies and organisations address gender equality in climate change-related responses. The political support for gender issues is reflected in presidential directives on various actions for achieving gender equality such as the establishment of gender desk officers and ensuring 30 per cent female representation in government. Despite the well-advanced gender mainstreaming policy in Kenya, few policies focus on climate change and even fewer on its inter-linkages with gender. At the field level, encrusted traditions, inadequately trained staff, limited financial resources, and limited awareness of the inter-linkages between gender and climate change remain major challenges to promoting gender equality in the work of government organisations. The paper thus proposes measures for addressing these challenges and strengthening gender equality in responses to climate change.
Resumo:
OBJECTIVES Pre-antiretroviral therapy (ART) inflammation and coagulation activation predict clinical outcomes in HIV-positive individuals. We assessed whether pre-ART inflammatory marker levels predicted the CD4 count response to ART. METHODS Analyses were based on data from the Strategic Management of Antiretroviral Therapy (SMART) trial, an international trial evaluating continuous vs. interrupted ART, and the Flexible Initial Retrovirus Suppressive Therapies (FIRST) trial, evaluating three first-line ART regimens with at least two drug classes. For this analysis, participants had to be ART-naïve or off ART at randomization and (re)starting ART and have C-reactive protein (CRP), interleukin-6 (IL-6) and D-dimer measured pre-ART. Using random effects linear models, we assessed the association between each of the biomarker levels, categorized as quartiles, and change in CD4 count from ART initiation to 24 months post-ART. Analyses adjusted for CD4 count at ART initiation (baseline), study arm, follow-up time and other known confounders. RESULTS Overall, 1084 individuals [659 from SMART (26% ART naïve) and 425 from FIRST] met the eligibility criteria, providing 8264 CD4 count measurements. Seventy-five per cent of individuals were male with the mean age of 42 years. The median (interquartile range) baseline CD4 counts were 416 (350-530) and 100 (22-300) cells/μL in SMART and FIRST, respectively. All of the biomarkers were inversely associated with baseline CD4 count in FIRST but not in SMART. In adjusted models, there was no clear relationship between changing biomarker levels and mean change in CD4 count post-ART (P for trend: CRP, P = 0.97; IL-6, P = 0.25; and D-dimer, P = 0.29). CONCLUSIONS Pre-ART inflammation and coagulation activation do not predict CD4 count response to ART and appear to influence the risk of clinical outcomes through other mechanisms than blunting long-term CD4 count gain.
Resumo:
Past agricultural responses to climate variability can helps us to better understand the current and future impacts of climate change on agricultural production. We studied rye (Secale cereale) and barley (Hordeum vulgare) yield responses to temperature fluctuations in Finland during the period 1861–1913. Our analyses demonstrate the high sensitivity of non-industrialised northern agriculture to temperature anomalies. We found evidence of a strong relationship between monthly and seasonal mean temperatures and crop yields. In particular, high spring temperatures were associated with higher yields. Additionally, we tested temperature-sensitive tree-ring series for their value in indicating previous agricultural outputs. The results imply that tree-ring proxies (in particular, maximum latewood density) can provide novel material for studies of historical periods and locations where instrumentally measured climate and harvest data are not available.
Resumo:
Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An ∼ 1000-member ensemble of the Bern3D-LPJ carbon–climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.
Resumo:
We investigated the effects of angry prosody, varying focus of attention, and laterality of presentation of angry prosody on peripheral nervous system activity. Participants paid attention to either their left or their right ear while performing a sex discrimination task on dichotically presented pseudo-words. These pseudo-words were characterized by either angry or neutral prosody and presented stereophonically (anger/neutral, neutral/anger, or neutral/neutral, for the left/right ear, respectively). Reaction times and physiological responses (heart period, skin conductance, finger and forehead temperature) in this study were differentially sensitive to the effects of anger versus neutral prosody, varying focus of attention, and laterality of presentation of angry prosody.