64 resultados para skeletal muscle cell
Resumo:
Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.
Resumo:
Several members of the human kallikrein-related peptidase family, including KLK6, are up-regulated in ovarian cancer. High KLK6 mRNA or protein expression, measured by quantitative polymerase chain reaction and enzyme-linked immunoassay, respectively, was previously found to be associated with a shortened overall and progression-free survival (OS and PFS, respectively). In the present study, we aimed at analyzing KLK6 protein expression in ovarian cancer tissue by immunohistochemistry. Using a newly developed monospecific polyclonal antibody, KLK6 immunoexpression was initially evaluated in normal tissues. We observed strong staining in the brain and moderate staining in the kidney, liver, and ovary, whereas the pancreas and the skeletal muscle were unreactive, which is in line with previously published results. Next, both tumor cell- and stromal cell-associated KLK6 immunoexpression were analyzed in tumor tissue specimens of 118 ovarian cancer patients. In multivariate Cox regression analysis, only stromal cell-associated expression, besides the established clinical parameters FIGO stage and residual tumor mass, was found to be statistically significant for OS and PFS [high vs. low KLK6 expression; hazard ratio (HR), 1.92; p=0.017; HR, 1.80; p=0.042, respectively]. These results indicate that KLK6 expressed by stromal cells may considerably contribute to the aggressiveness of ovarian cancer.
Resumo:
We describe the case of a 55-year-old man who presented with parasternal swelling. The chest CT scan showed a large tumor of the chest wall infiltrating the subcutaneous tissue. To assume histologic diagnosis an open biopsy was performed. Between the myofibrils a coarse, white tumor with infiltrative growth was noted. Histopathologic examination revealed expanded atrophic skeletal muscle that was infiltrated by histiocytic cells. Numerous eosinophilic granulocytes and lymphocytes CD20 and CD3 positive could be detected and immunohistochemical staining was also positive for S-100 proteins and CD1a. Histologic findings were characteristic of Langerhans cell histiocytosis (LCH). To the best of our knowledge a LCH originating from the mediastinum in an adult as presented has not been previously described.
Resumo:
Aims Duchenne muscular dystrophy (DMD), a degenerative pathology of skeletal muscle, also induces cardiac failure and arrhythmias due to a mutation leading to the lack of the protein dystrophin. In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The absence of dystrophin results in an elevated stress-induced Ca2+ influx due to the inadequate functioning of several proteins, such as stretch-activated channels (SACs). Our aim was to investigate whether transient receptor potential vanilloid channels type 2 (TRPV2) form subunits of the dysregulated SACs in cardiac dystrophy. Methods and results We defined the role of TRPV2 channels in the abnormal Ca2+ influx of cardiomyocytes isolated from dystrophic mdx mice, an established animal model for DMD. In dystrophic cells, western blotting showed that TRPV2 was two-fold overexpressed. While normally localized intracellularly, in myocytes from mdx mice TRPV2 channels were translocated to the sarcolemma and were prominent along the T-tubules, as indicated by immunocytochemistry. Membrane localization was confirmed by biotinylation assays. Furthermore, in mdx myocytes pharmacological modulators suggested an abnormal activity of TRPV2, which has a unique pharmacological profile among TRP channels. Confocal imaging showed that these compounds protected the cells from stress-induced abnormal Ca2+ signals. The involvement of TRPV2 in these signals was confirmed by specific pore-blocking antibodies and by small-interfering RNA ablation of TRPV2. Conclusion Together, these results establish the involvement of TRPV2 in a stretch-activated calcium influx pathway in dystrophic cardiomyopathy, contributing to the defective cellular Ca2+ handling in this disease.