74 resultados para sensorimotor synchronization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial–Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard–Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (δ18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard–Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-based indoor localization has been investigated for several years but the accuracy of existing solutions is limited by several factors, e.g., imperfect synchronization, signal bandwidth and indoor environment. In this paper, we compare two time-based localization algorithms for narrow-band signals, i.e., multilateration and fingerprinting. First, we develop a new Linear Least Square (LLS) algorithm for Differential Time Difference Of Arrival (DTDOA). Second, fingerprinting is among the most successful approaches used for indoor localization and typically relies on the collection of measurements on signal strength over the area of interest. We propose an alternative by constructing fingerprints of fine-grained time information of the radio signal. We offer comprehensive analytical discussions on the feasibility of the approaches, which are backed up by evaluations in a software defined radio based IEEE 802.15.4 testbed. Our work contributes to research on localization with narrow-band signals. The results show that our proposed DTDOA-based LLS algorithm obviously improves the localization accuracy compared to traditional TDOA-based LLS algorithm but the accuracy is still limited because of the complex indoor environment. Furthermore, we show that time-based fingerprinting is a promising alternative to power-based fingerprinting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Stochastic resonance whole body vibrations (SR-WBV) may reduce and prevent musculoskeletal problems (MSP). The aim of this study was to evaluate how activities of the lumbar erector spinae (ES) and of the ascending and descending trapezius (TA, TD) change in upright standing position during SR-WBV. METHODS: Nineteen female subjects completed 12 series of 10 seconds of SR-WBV at six different frequencies (2, 4, 6, 8, 10, 12Hz) and two types of "noise"-applications. An assessment at rest had been executed beforehand. Muscle activities were measured with EMG and normalized to the maximum voluntary contraction (MVC%). For statistical testing a three-factorial analysis of variation (ANOVA) was applied. RESULTS: The maximum activity of the respective muscles was 14.5 MVC% for the ES, 4.6 MVC% for the TA (12Hz with "noise" both), and 7.4 MVC% for the TD (10Hz without "noise"). Furthermore, all muscles varied significantly at 6Hz and above (p⋜0.047) compared to the situation at rest. No significant differences were found at SR-WBV with or without "noise". CONCLUSIONS: In general, muscle activity during SR-WBV is reasonably low and comparable to core strength stability exercises, sensorimotor training and "abdominal hollowing" in water. SR-WBV may be a therapeutic option for the relief of MSP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke is one of the most common conditions requiring rehabilitation, and its motor impairments are a major cause of permanent disability. Hemiparesis is observed by 80% of the patients after acute stroke. Neuroimaging studies showed that real and imagined movements have similarities regarding brain activation, supplying evidence that those similarities are based on the same process. Within this context, the combination of MP with physical and occupational therapy appears to be a natural complement based on neurorehabilitation concepts. Our study seeks to investigate if MP for stroke rehabilitation of upper limbs is an effective adjunct therapy. PubMed (Medline), ISI knowledge (Institute for Scientific Information) and SciELO (Scientific Electronic Library) were terminated on 20 February 2015. Data were collected on variables as follows: sample size, type of supervision, configuration of mental practice, setting the physical practice (intensity, number of sets and repetitions, duration of contractions, rest interval between sets, weekly and total duration), measures of sensorimotor deficits used in the main studies and significant results. Random effects models were used that take into account the variance within and between studies. Seven articles were selected. As there was no statistically significant difference between the two groups (MP vs Control), showed a – 0.6 (95% CI: –1.27 to 0.04), for upper limb motor restoration after stroke. The present meta-analysis concluded that MP is not effective as adjunct therapeutic strategy for upper limb motor restoration after stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: A prerequisite for high performance in motor tasks is the acquisition of egocentric sensory information that must be translated into motor actions. A phenomenon that supports this process is the Quiet Eye (QE) defined as long final fixation before movement initiation. It is assumed that the QE facilitates information processing, particularly regarding movement parameterization. Aims: The question remains whether this facilitation also holds for the information-processing stage of response selection and – related to perception crucial – stage of stimulus identification. Method: In two experiments with sport science students, performance-enhancing effects of experimentally manipulated QE durations were tested as a function of target position predictability and target visibility, thereby selectively manipulating response selection and stimulus identification demands, respectively. Results: The results support the hypothesis of facilitated information processing through long QE durations since in both experiments performance-enhancing effects of long QE durations were found under increased processing demands only. In Experiment 1, QE duration affected performance only if the target position was not predictable and positional information had to be processed over the QE period. In Experiment 2, in a full vs. no target visibility comparison with saccades to the upcoming target position induced by flicker cues, the functionality of a long QE duration depended on the visual stimulus identification period as soon as the interval falls below a certain threshold. Conclusions: The results corroborate earlier findings that QE efficiency depends on demands put on the visuomotor system, thereby furthering the assumption that the phenomenon supports the processes of sensorimotor integration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spontaneous EEG signal can be parsed into sub-second periods of stable functional states (microstates) that assumingly correspond to brief large scale synchronization events. In schizophrenia, a specific class of microstate (class "D") has been found to be shorter than in healthy controls and to be correlated with positive symptoms. To explore potential new treatment options in schizophrenia, we tested in healthy controls if neurofeedback training to self-regulate microstate D presence is feasible and what learning patterns are observed. Twenty subjects underwent EEG-neurofeedback training to up-regulate microstate D presence. The protocol included 20 training sessions, consisting of baseline trials (resting state), regulation trials with auditory feedback contingent on microstate D presence, and a transfer trial. Response to neurofeedback was assessed with mixed effects modelling. All participants increased the percentage of time spent producing microstate D in at least one of the three conditions (p < 0.05). Significant between-subjects across-sessions results showed an increase of 0.42 % of time spent producing microstate D in baseline (reflecting a sustained change in the resting state), 1.93 % of increase during regulation and 1.83 % during transfer. Within-session analysis (performed in baseline and regulation trials only) showed a significant 1.65 % increase in baseline and 0.53 % increase in regulation. These values are in a range that is expected to have an impact upon psychotic experiences. Additionally, we found a negative correlation between alpha power and microstate D contribution during neurofeedback training. Given that microstate D has been related to attentional processes, this result provides further evidence that the training was to some degree specific for the attentional network. We conclude that microstate-neurofeedback training proved feasible in healthy subjects. The implementation of the same protocol in schizophrenia patients may promote skills useful to reduce positive symptoms by means of EEG-neurofeedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Our aim was to assess the diagnostic and predictive value of several quantitative EEG (qEEG) analysis methods in comatose patients. METHODS In 79 patients, coupling between EEG signals on the left-right (inter-hemispheric) axis and on the anterior-posterior (intra-hemispheric) axis was measured with four synchronization measures: relative delta power asymmetry, cross-correlation, symbolic mutual information and transfer entropy directionality. Results were compared with etiology of coma and clinical outcome. Using cross-validation, the predictive value of measure combinations was assessed with a Bayes classifier with mixture of Gaussians. RESULTS Five of eight measures showed a statistically significant difference between patients grouped according to outcome; one measure revealed differences in patients grouped according to the etiology. Interestingly, a high level of synchrony between the left and right hemisphere was associated with mortality on intensive care unit, whereas higher synchrony between anterior and posterior brain regions was associated with survival. The combination with the best predictive value reached an area-under the curve of 0.875 (for patients with post anoxic encephalopathy: 0.946). CONCLUSIONS EEG synchronization measures can contribute to clinical assessment, and provide new approaches for understanding the pathophysiology of coma. SIGNIFICANCE Prognostication in coma remains a challenging task. qEEG could improve current multi-modal approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES Widespread sensory deficits occur in 20-40% of chronic pain patients on the side of pain, independent of pain aetiology, and are known as nondermatomal sensory deficits (NDSDs). NDSDs can occur in absence of central or peripheral nervous system lesions. We hypothesised that NDSDs were associated with cerebral grey matter changes in the sensory system and in pain processing regions, detectable with voxel-based morphometry. METHODS Twenty-five patients with NDSDs, 23 patients without NDSDs ("pain-only"), and 29 healthy controls were studied with high resolution structural MRI of the brain. A comprehensive clinical and psychiatric evaluation based on Diagnostic and Statistical Manual was performed in all patients. RESULTS Patients with NDSDs and "pain-only" did not differ concerning demographic data and psychiatric diagnoses, although anxiety scores (HADS-A) were higher in patients with NDSDs. In patients with NDSDs, grey matter increases were found in the right primary sensory cortex, thalamus, and bilaterally in lateral temporal regions and the hippocampus/fusiform gyrus. "Pain-only" patients showed a bilateral grey matter increase in the posterior insula and less pronounced changes in sensorimotor cortex. CONCLUSIONS Dysfunctional sensory processing in patients with NDSDs is associated with complex changes in grey matter volume, involving the somatosensory system and temporal regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES Despite the recommendations of national and international societies for the treatment of patients with acute neck and back pain, still too many radiologic examinations were performed. The purpose of this study was to analyze and optimize diagnostics and treatment of patients with acute back pain. METHODS The medical records of 484 patients presented to the emergency clinic with acute neck or back pain were analyzed for clinical history, physical examination, radiographic findings and therapy. RESULTS Radiographs of the lumbar, cervical, or thoracic spine were performed in 338 cases (70%). Radiographs were normal in 142 patients (42%) and degenerative changes were identified in 123 patients (36%). Only 2 patients (0.4%) had radiographic findings that had direct therapeutic relevance: 1 patient with metastatic disease and 1 patient with posttraumatic C1-C2 instability. For most patients without sensorimotor deficits and absent specific indications for radiography (“red flags”), therapy was not affected by the results of radiography. CONCLUSIONS Plain radiography of the spine was unnecessary in most patients initially evaluated with non-specific acute back pain and does not improve the clinical outcome. The implementation of national and international guidelines is a slow process, but helps to reduce costs and to protect patients from unnecessary ionizing radiation exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. METHODS Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). RESULTS Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. CONCLUSIONS We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indoor positioning has attracted considerable attention for decades due to the increasing demands for location based services. In the past years, although numerous methods have been proposed for indoor positioning, it is still challenging to find a convincing solution that combines high positioning accuracy and ease of deployment. Radio-based indoor positioning has emerged as a dominant method due to its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator) has been investigated in the area of indoor positioning for decades. However, it is prone to multipath propagation and hence fingerprinting has become the most commonly used method for indoor positioning using RSSI. The drawback of fingerprinting is that it requires intensive labour efforts to calibrate the radio map prior to experiments, which makes the deployment of the positioning system very time consuming. Using time information as another way for radio-based indoor positioning is challenged by time synchronization among anchor nodes and timestamp accuracy. Besides radio-based positioning methods, intensive research has been conducted to make use of inertial sensors for indoor tracking due to the fast developments of smartphones. However, these methods are normally prone to accumulative errors and might not be available for some applications, such as passive positioning. This thesis focuses on network-based indoor positioning and tracking systems, mainly for passive positioning, which does not require the participation of targets in the positioning process. To achieve high positioning accuracy, we work on some information of radio signals from physical-layer processing, such as timestamps and channel information. The contributions in this thesis can be divided into two parts: time-based positioning and channel information based positioning. First, for time-based indoor positioning (especially for narrow-band signals), we address challenges for compensating synchronization offsets among anchor nodes, designing timestamps with high resolution, and developing accurate positioning methods. Second, we work on range-based positioning methods with channel information to passively locate and track WiFi targets. Targeting less efforts for deployment, we work on range-based methods, which require much less calibration efforts than fingerprinting. By designing some novel enhanced methods for both ranging and positioning (including trilateration for stationary targets and particle filter for mobile targets), we are able to locate WiFi targets with high accuracy solely relying on radio signals and our proposed enhanced particle filter significantly outperforms the other commonly used range-based positioning algorithms, e.g., a traditional particle filter, extended Kalman filter and trilateration algorithms. In addition to using radio signals for passive positioning, we propose a second enhanced particle filter for active positioning to fuse inertial sensor and channel information to track indoor targets, which achieves higher tracking accuracy than tracking methods solely relying on either radio signals or inertial sensors.