94 resultados para screw
Resumo:
Pedicle hooks which are used as an anchorage for posterior spinal instrumentation may be subjected to considerable three-dimensional forces. In order to achieve stronger attachment to the implantation site, hooks using screws for additional fixation have been developed. The failure loads and mechanisms of three such devices have been experimentally determined on human thoracic vertebrae: the Universal Spine System (USS) pedicle hook with one screw, a prototype pedicle hook with two screws and the Cotrel-Dubousset (CD) pedicle hook with screw. The USS hooks use 3.2-mm self-tapping fixation screws which pass into the pedicle, whereas the CD hook is stabilised with a 3-mm set screw pressing against the superior part of the facet joint. A clinically established 5-mm pedicle screw was tested for comparison. A matched pair experimental design was implemented to evaluate these implants in constrained (series I) and rotationally unconstrained (series II) posterior pull-out tests. In the constrained tests the pedicle screw was the strongest implant, with an average pull-out force of 1650 N (SD 623 N). The prototype hook was comparable, with an average failure load of 1530 N (SD 414 N). The average pull-out force of the USS hook with one screw was 910 N (SD 243 N), not significantly different to the CD hook's average failure load of 740 N (SD 189 N). The result of the unconstrained tests were similar, with the prototype hook being the strongest device (average 1617 N, SD 652 N). However, in this series the difference in failure load between the USS hook with one screw and the CD hook was significant. Average failure loads of 792 N (SD 184 N) for the USS hook and 464 N (SD 279 N) for the CD hook were measured. A pedicular fracture in the plane of the fixation screw was the most common failure mode for USS hooks.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The removal of nonretrievable implant components represents a challenge in implant dentistry. The mechanical approach involves the risk of damaging the implant connection or the bone-to-implant interface. This case report describes a cryo-mechanical approach for the safe removal of a nonretrievable implant component. A patient had an implant surgically placed in a private practice. When the patient returned to the restorative dentist to make a definitive impression, the healing abutment could not be loosened. The patient was referred to the Division of Fixed Prosthodontics (University of Bern, Switzerland), where the stripped screw hole was enlarged with a special drill from a service kit of the implant provider. Although an extraction bolt was screwed into the opening and the torque ratchet was activated, the healing abutment would not loosen. A novel approach was attempted whereby the healing abutment was cooled with dry ice (CO2). The cooling effect seemingly caused shrinkage of the healing abutment and a reduction of the connection forces between the implant and the nonretrievable component. The approach of creating an access hole for the application of reverse torque via the extraction bolt in combination with the thermal effect led to the successful removal of the blocked component. Neither the implant connection nor the bone-to-implant interface was damaged. The combined cryo-mechanical procedure allowed the implant to be successfully restored.
Resumo:
OBJECTIVES Optical scanners combined with computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide high accuracy in the fabrication of titanium (TIT) and zirconium dioxide (ZrO) bars. The aim of this study was to compare the precision of fit of CAD/CAM TIT bars produced with a photogrammetric and a laser scanner. METHODS Twenty rigid CAD/CAM bars were fabricated on one single edentulous master cast with 6 implants in the positions of the second premolars, canines and central incisors. A photogrammetric scanner (P) provided digitized data for TIT-P (n=5) while a laser scanner (L) was used for TIT-L (n=5). The control groups consisted of soldered gold bars (gold, n=5) and ZrO-P with similar bar design. Median vertical distance between implant and bar platforms from non-tightened implants (one-screw test) was calculated from mesial, buccal and distal scanning electron microscope measurements. RESULTS Vertical microgaps were not significantly different between TIT-P (median 16μm; 95% CI 10-27μm) and TIT-L (25μm; 13-32μm). Gold (49μm; 12-69μm) had higher values than TIT-P (p=0.001) and TIT-L (p=0.008), while ZrO-P (35μm; 17-55μm) exhibited higher values than TIT-P (p=0.023). Misfit values increased in all groups from implant position 23 (3 units) to 15 (10 units), while in gold and TIT-P values decreased from implant 11 toward the most distal implant 15. SIGNIFICANCE CAD/CAM titanium bars showed high precision of fit using photogrammetric and laser scanners. In comparison, the misfit of ZrO bars (CAM/CAM, photogrammetric scanner) and soldered gold bars was statistically higher but values were clinically acceptable.
Resumo:
The authors tested an autoclavable external ring retractor, fixed to the operation table, for the endoscopic reconstruction of anterior column injuries of the thoracolumbar junction. It served as a retractor for the diaphragm, and offered a stable support for the scope and other instruments, making an assistant superfluous. Moreover, it allowed bimanual manipulation. Of course, the two-dimensional image, provided by the scope, necessitated proper eye-hand coordination. Twenty-eight consecutive patients underwent either a monosegmental (n = 10) or a bisegmental (n = 18) anterior stabilization in the area Th11L1. Three portals were necessary, but an assistant was not needed. The overall (mean +/- SD) operating time was 196 +/- 56 min, the blood loss was 804 +/- 719 mL. Intraoperatively, one epidural bleeding and a single screw cut-out occurred. All complications were managed endoscopically. Postoperatively, evacuation of a haemothorax (n = 1) was necessary. In all patients, wounds and fractures healed uneventfully. The combination of the endoscopic technique and the retractor system was feasible, successful, safe, and time efficient. Moreover, it allowed for anterior instrumentation of thoracolumbar fractures by a single surgeon. It became the standard approach in the authors' department.
Resumo:
BACKGROUND CONTEXT A new device, DensiProbe, has been developed to provide surgeons with intraoperative information about bone strength by measuring the peak breakaway torque. In cases of low bone quality, the treatment can be adapted to the patient's condition, for example, by improving screw-anchorage with augmentation techniques. PURPOSE The objective of this study was to investigate the feasibility of DensiProbe Spine in patients undergoing transpedicular fixation. STUDY DESIGN Prospective feasibility study on consecutive patients. PATIENT SAMPLE Fourteen women and 16 men were included in this study. OUTCOME MEASURES Local and general bone quality. METHODS These consecutive patients scheduled for transpedicular fixation were evaluated for bone mineral density (BMD), which was measured globally by dual-energy X-ray absorptiometry and locally via biopsies using quantitative microcomputed tomography. The breakaway torque force within the vertebral body was assessed intraoperatively via the transpedicular approach with the DensiProbe Spine. The results were correlated with the areal BMD at the lumbar spine and the local volumetric BMD (vBMD) and a subjective impression of bone strength. The feasibility of the method was evaluated, and the clinical and radiological performance was evaluated over a 1-year follow-up. This study was funded by an AO Spine research grant; DensiProbe was developed at the AO Research Institute Davos, Switzerland; the AO Foundation is owner of the intellectual property rights. RESULTS In 30 patients, 69 vertebral levels were examined. The breakaway torque consistently correlated with an experienced surgeon's quantified impression of resistance as well as with vBMD of the same vertebra. Beyond a marginal prolongation of surgery time, no adverse events related to the usage of the device were observed. CONCLUSIONS The intraoperative transpedicular measurement of the peak breakaway torque was technically feasible, safe, and reliably predictive of local vBMD during dorsal spinal instrumentations in a clinical setting. Larger studies are needed to define specific thresholds that indicate a need for the augmentation or instrumentation of additional levels.
Resumo:
INTRODUCTION Stable reconstruction of proximal femoral (PF) fractures is especially challenging due to the peculiarity of the injury patterns and the high load-bearing requirement. Since its introduction in 2007, the PF-locking compression plate (LCP) 4.5/5.0 has improved osteosynthesis for intertrochanteric and subtrochanteric fractures of the femur. This study reports our early results with this implant. METHODS Between January 2008 and June 2010, 19 of 52 patients (12 males, 7 females; mean age 59 years, range 19-96 years) presenting with fractures of the trochanteric region were treated at the authors' level 1 trauma centre with open reduction and internal fixation using PF-LCP. Postoperatively, partial weight bearing was allowed for all 19 patients. Follow-up included a thorough clinical and radiological evaluation at 1.5, 3, 6, 12, 24, 36 and 48 months. Failure analysis was based on conventional radiological and clinical assessment regarding the type of fracture, postoperative repositioning, secondary fracture dislocation in relation to the fracture constellation and postoperative clinical function (Merle d'Aubigné score). RESULTS In 18 patients surgery achieved adequate reduction and stable fixation without intra-operative complications. In one patient an ad latus displacement was observed on postoperative X-rays. At the third month follow-up four patients presented with secondary varus collapse and at the sixth month follow-up two patients had 'cut-outs' of the proximal fragment, with one patient having implant failure due to a broken proximal screw. Revision surgeries were performed in eight patients, one patient receiving a change of one screw, three patients undergoing reosteosynthesis with implantation of a condylar plate and one patient undergoing hardware removal with secondary implantation of a total hip prosthesis. Eight patients suffered from persistent trochanteric pain and three patients underwent hardware removal. CONCLUSIONS Early results for PF-LCP osteosynthesis show major complications in 7 of 19 patients requiring reosteosynthesis or prosthesis implantation due to secondary loss of reduction or hardware removal. Further studies are required to evaluate the limitations of this device.
Resumo:
Purpose: The objective of this systematic review was to assess and compare the survival and complication rates of implant-supported prostheses reported in studies published in the year 2000 and before, to those reported in studies published after the year 2000. Materials and Methods: Three electronic searches complemented by manual searching were conducted to identify 139 prospective and retrospective studies on implant-supported prostheses. The included studies were divided in two groups: a group of 31 older studies published in the year 2000 or before, and a group of 108 newer studies published after the year 2000. Survival and complication rates were calculated using Poisson regression models, and multivariable robust Poisson regression was used to formally compare the outcomes of older and newer studies. Results: The 5-year survival rate of implant-supported prostheses was significantly increased in newer studies compared with older studies. The overall survival rate increased from 93.5% to 97.1%. The survival rate for cemented prostheses increased from 95.2% to 97.9%; for screw-retained reconstruction, from 77.6% to 96.8%; for implant-supported single crowns, from 92.6% to 97.2%; and for implant-supported fixed dental prostheses (FDPs), from 93.5% to 96.4%. The incidence of esthetic complications decreased in more recent studies compared with older ones, but the incidence of biologic complications was similar. The results for technical complications were inconsistent. There was a significant reduction in abutment or screw loosening by implant-supported FDPs. On the other hand, the total number of technical complications and the incidence of fracture of the veneering material was significantly increased in the newer studies. To explain the increased rate of complications, minor complications are probably reported in more detail in the newer publications. Conclusions: The results of the present systematic review demonstrated a positive learning curve in implant dentistry, represented in higher survival rates and lower complication rates reported in more recent clinical studies. The incidence of esthetic, biologic, and technical complications, however, is still high. Hence, it is important to identify these complications and their etiology to make implant treatment even more predictable in the future.
Resumo:
An 18-month-old female crossbred dog was presented with a unilateral sacroiliac luxation and separation of the pelvic symphysis. Surgical correction of the luxation with screw fixation led to entrapment of the urethra between the symphyseal parts of the two hemipelves.
Resumo:
Introduction: Anterior cruciate ligament (ACL) injuries are very common; in Germany incidence of ACL ruptures is estimated at 32 per 100 000 in the general population and in the sports community this rate more than doubles. Current gold standard for anterior cruciate lig- ament repair is reconstruction using an autograft [1]. However, this approach has shown some limitations. A new method has been her- alded by the Knee Team at the Bern University Hospital (Inselspital) and the Sonnenhof clinic called Dynamic Intraligamentary Stabilization (DIS), which keeps ACL remnants in place in order to promote biologi- cal healing and makes use of a dynamic screw system [2]. The aim of this study was to investigate the cytocompatibility of collagen patches in combination with DIS to support regeneration of the ACL. The spe- cific hypothesis we tested was whether MSCs would differentiate towards TCs in co-culture. Materials and methods: Primary Tenocytes (TCs) and human bone marrow derived mesenchymal stem cells (MSCs) were harvested from ACL removed during knee prothesis or from bone marrow aspirations (Ethical Permit 187/10). Cells were seeded on two types of three dimensional carriers currently approved for cartilage repair, Novocart (NC, B. Brown) and Chondro-Gide (CG, Geistlich). These scaffolds comprise collagen structures with interconnecting pores originally developed for seeding of chondrocytes in the case of CG. ~40k cells were seeded on punched zylindrical cores of 8 mm in Ø and cultured on CG or NC patches for up to 7 days. The cells were either cultured as TC only, MSC only or co-cultured in a 1:1 mix on the scaffolds and on both sides of culture inserts (PET, high density pore Ø 0.4 mm, BD, Fal- con) with cell-cell contact. We monitored DNA content, GAG and HOP-content, tracked the cells using DIL and DIO fluorescent dyes (Molecular Probes, Life technologies) and confocal laser scanning and SEM microscopy as well as RT-PCR of tenocyte specific markers (i.e. col 1 and 3, TNC, TNMD, SCXA&B, and markers of dedifferentiation ACAN, col2, MMP3, MMP13). Finally, H&E stain was interpreted on cryosections and SEM images of cells on the scaffold were taken. Results: ThecLSMimagesshowedcellproliferationoverthe7dayson both matrices, however, on CG there were much fewer MSCs attached than on NC. SEM images showed a roundish chondrocyte-like pheno- type of cells on CG whereas on NC the phenotype was more teno- cyte-like (Fig. 1). Gene expression of both, MSC and TC seem to confirm a more favorable environment in 3D for both patches rather than monolayer control.
Resumo:
AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair. METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied. RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days. CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.
Resumo:
BACKGROUND Medial open wedge high tibial osteotomy is a well-established procedure for the treatment of unicompartmental osteoarthritis and symptomatic varus malalignment. We hypothesized that different fixation devices generate different fixation stability profiles for the various wedge sizes in a finite element (FE) analysis. METHODS Four types of fixation were compared: 1) first and 2) second generation Puddu plates, and 3) TomoFix plate with and 4) without bone graft. Cortical and cancellous bone was modelled and five different opening wedge sizes were studied for each model. Outcome measures included: 1) stresses in bone, 2) relative displacement of the proximal and distal tibial fragments, 3) stresses in the plates, 4) stresses on the upper and lower screw surfaces in the screw channels. RESULTS The highest load for all fixation types occurred in the plate axis. For the vast majority of the wedge sizes and fixation types the shear stress (von Mises stress) was dominating in the bone independent of fixation type. The relative displacements of the tibial fragments were low (in μm range). With an increasing wedge size this displacement tended to increase for both Puddu plates and the TomoFix plate with bone graft. For the TomoFix plate without bone graft a rather opposite trend was observed.For all fixation types the occurring stresses at the screw-bone contact areas pulled at the screws and exceeded the allowable threshold of 1.2 MPa for at least one screw surface. Of the six screw surfaces that were studied, the TomoFix plate with bone graft showed a stress excess of one out of twelve and without bone graft, five out of twelve. With the Puddu plates, an excess stress occurred in the majority of screw surfaces. CONCLUSIONS The different fixation devices generate different fixation stability profiles for different opening wedge sizes. Based on the computational simulations, none of the studied osteosynthesis fixation types warranted an intransigent full weight bearing per se. The highest fixation stability was observed for the TomoFix plates and the lowest for the first generation Puddu plate. These findings were revealed in theoretical models and need to be validated in controlled clinical settings.
Resumo:
INTRODUCTION Recent meta-analyses of the outcome of apical surgery using modern techniques including microsurgical principles and high-power magnification have yielded higher rates of healing. However, the information is mainly based on 1- to 2-year follow-up data. The present prospective study was designed to re-examine a large sample of teeth treated with apical surgery after 5 years. METHODS Patients were recalled 5 years after apical surgery, and treated teeth were classified as healed or not healed based on clinical and radiographic examination. (The latter was performed independently by 3 observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS A total of 271 patients and teeth from a 1-year follow-up sample of 339 could be re-examined after 5 years (dropout rate = 20.1%). The overall rate of healed cases was 84.5% with a significant difference (P = .0003) when comparing MTA (92.5%) and COMP (76.6%). The evaluation of secondary study parameters yielded no significant difference for healing outcome when comparing subcategories (ie, sex, age, type of tooth treated, post/screw, type of surgery). CONCLUSIONS The results from this prospective nonrandomized clinical study with a 5-year follow-up of 271 teeth indicate that MTA exhibited a higher healing rate than COMP in the longitudinal prognosis of root-end sealing.
Resumo:
PURPOSE Clinical studies related to the long-term outcomes with implant-supported reconstructions are still sparse. The aim of this 10-year retrospective study was to assess the rate of mechanical/technical complications and failures with implant supported fixed dental prostheses (FDPs) and single crowns (SCs) in a large cohort of partially edentulous patients. MATERIALS AND METHODS The comprehensive multidisciplinary examination consisted of a medical/dental history, clinical examination, and a radiographic analysis. Prosthodontic examination evaluated the implant-supported reconstructions for mechanical/technical complications and failures, occlusal analysis, presence/absence of attrition, and location, extension, and retention type. RESULTS Out of three hundred ninety seven fixed reconstructions in three hundred three patients, two hundred sixty eight were SCs and one hundred twenty seven were FDPs. Of these three hundred ninety seven implant-supported reconstructions, 18 had failed, yielding a failure rate of 4.5% and a survival rate of 95.5% after a mean observation period of 10.75 years (range: 8.4-13.5 years). The most frequent complication was ceramic chipping (20.31%) followed by occlusal screw loosening (2.57%) and loss of retention (2.06%). No occlusal screw fracture, one abutment loosening, and two abutment fractures were noted. This resulted in a total mechanical/technical complication rate of 24.7%. The prosthetic success rate over a mean follow-up time of 10.75 years was 70.8%. Generalized attrition and FDPs were associated with statistically significantly higher rates of ceramic fractures when compared with SCs. Cantilever extensions, screw retention, anterior versus posterior, and gender did not influence the chipping rate. CONCLUSIONS After a mean exposure time of 10.75 years, high survival rates for reconstructions supported by Sand-blasted Large-grit Acid-etched implants can be expected. Ceramic chipping was the most frequent complication and was increased in dentitions with attrition and in FDPs compared with SCs.
Resumo:
OBJECTIVE The Short Communication presents a clinical case in which a novel procedure--the "Individualized Scanbody Technique" (IST)--was applied, starting with an intraoral digital impression and using CAD/CAM process for fabrication of ceramic reconstructions in bone level implants. MATERIAL AND METHODS A standardized scanbody was individually modified in accordance with the created emergence profile of the provisional implant-supported restoration. Due to the specific adaptation of the scanbody, the conditioned supra-implant soft tissue complex was stabilized for the intraoral optical scan process. Then, the implant platform position and the supra-implant mucosa outline were transferred into the three-dimensional data set with a digital impression system. Within the technical workflow, the ZrO2 -implant-abutment substructure could be designed virtually with predictable margins of the supra-implant mucosa. RESULTS After finalization of the 1-piece screw-retained full ceramic implant crown, the restoration demonstrated an appealing treatment outcome with harmonious soft tissue architecture. CONCLUSIONS The IST facilitates a simple and fast approach for a supra-implant mucosal outline transfer in the digital workflow. Moreover, the IST closes the interfaces in the full digital pathway.
Resumo:
PURPOSE To evaluate technical complications and failures of zirconia-based fixed prostheses supported by implants. MATERIALS AND METHODS Consecutive patients received zirconia-based single crowns (SCs) and fixed dental prostheses (FDPs) on implants in a private clinical setting between 2005 and 2010. One dentist performed all surgical and prosthetic procedures, and one master technician performed and coordinated all laboratory procedures. One-piece computer-aided design/ computer-assisted manufacture technology was used to fabricate abutments and frameworks, which were directly connected at the implant level, where possible. All patients were involved in a recall maintenance program and were finally reviewed in 2012. Data on framework fractures, chipping of veneering ceramics, and other technical complications were recorded. The primary endpoint was failure of the prostheses, ie, the need for a complete remake. A life table analysis was calculated. RESULTS A total of 289 implants supported 193 zirconia-based prostheses (120 SCs and 73 FDPs) in 127 patients (51 men, 76 women; average age: 62.5 ± 13.4 years) who were reviewed in 2012. Twenty-five (13%) prostheses were cemented on 44 zirconia abutments and 168 (87%) prostheses were screw-retained directly at the implant level. Fracture of 3 frameworks (1 SC, 2 FDPs) was recorded, and significant chipping resulted in the remake of 3 prostheses (1 SC, 2 FDPs). The 7-year cumulative survival rate was 96.4% ± 1.99%. Minor complications comprised 5 loose screws (these were retightened), small chips associated with 3 prostheses (these were polished), and dislodgement of 3 prostheses (these were recemented). Overall, 176 prostheses remained free of technical problems. CONCLUSIONS Zirconia-based prostheses screwed directly to implants are clinically successful in the short and medium term.