103 resultados para satellite segment
Resumo:
PURPOSE To report the incidence of anterior capsule contraction syndrome (ACCS) and to present a novel minimally invasive bimanual technique for anterior segment revision surgery associated with ACCS with anterior flexion of the intraocular lens haptics. METHODS A consecutive cohort of 268 eyes of 161 patients undergoing phacoemulsification and implantation of the same type of hydrophilic acrylic aspheric intraocular lens cohort were analysed and a novel technique of minimally invasive bimanual technique for anterior segment revision surgery is described. RESULTS We identified four eyes (1.5%) of three patients with advanced ACCS. Successful restoration of a clear visual axis with minimal induction of astigmatism and rapid visual rehabilitation was achieved in all four cases. CONCLUSION This technique is a safe and minimally invasive alternative to laser or vitrector-cut capsulotomy to restore a clear visual axis. In cases of advanced ACCS, it offers the option for haptic reposition or amputation.
Resumo:
[1] In the event of a termination of the Gravity Recovery and Climate Experiment (GRACE) mission before the launch of GRACE Follow-On (due for launch in 2017), high-low satellite-to-satellite tracking (hl-SST) will be the only dedicated observing system with global coverage available to measure the time-variable gravity field (TVG) on a monthly or even shorter time scale. Until recently, hl-SST TVG observations were of poor quality and hardly improved the performance of Satellite Laser Ranging observations. To date, they have been of only very limited usefulness to geophysical or environmental investigations. In this paper, we apply a thorough reprocessing strategy and a dedicated Kalman filter to Challenging Minisatellite Payload (CHAMP) data to demonstrate that it is possible to derive the very long-wavelength TVG features down to spatial scales of approximately 2000 km at the annual frequency and for multi-year trends. The results are validated against GRACE data and surface height changes from long-term GPS ground stations in Greenland. We find that the quality of the CHAMP solutions is sufficient to derive long-term trends and annual amplitudes of mass change over Greenland. We conclude that hl-SST is a viable source of information for TVG and can serve to some extent to bridge a possible gap between the end-of-life of GRACE and the availability of GRACE Follow-On.
Resumo:
The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .
Resumo:
Background: Ischemia monitoring cannot always be performed by 12-lead ECG. Hence, the individual performance of the ECG leads is crucial. No experimental data on the ECG's specificity for transient ischemia exist. Methods: In 45 patients a 19-lead ECG was registered during a 1-minute balloon occlusion of a coronary artery (left anterior descending artery [LAD], right coronary artery [RCA] or left circumflex artery [LCX]). ST-segment shifts and sensitivity/specificity of the leads were measured. Results: During LAD occlusion, V3 showed maximal ST-segment elevation (0.26 mV [IQR 0.16–0.33 mV], p = 0.001) and sensitivity/specificity (88% and 80%). During RCA occlusion, III showed maximal ST-elevation (0.2 mV [IQR 0.09–0.26 mV], p = 0.004), aVF had the best sensitivity/specificity (85% and 68%). During LCX occlusion, V6 showed maximal ST-segment elevation (0.04 mV [IQR 0.02–0.14 mV], p = 0.005), and sensitivity/specificity was (31%/92%) but could be improved (63%/72%) using an optimized cut-off for ischemia. Conclusion: V3, aVF and V6 show the best performance to detect transient ischemia.
Resumo:
Aims: Arterial plaque rupture and thrombus characterise ST-elevation myocardial infarction (STEMI) and may aggravate delayed arterial healing following durable polymer drug-eluting stent (DP-DES) implantation. Biodegradable polymer (BP) may improve biocompatibility. We compared long-term outcomes in STEMI patients receiving BP-DES vs. durable polymer sirolimus-eluting stents (DP-SES). Methods and results: We pooled individual patient-level data from three randomised clinical trials (ISAR-TEST-3, ISAR-TEST-4 and LEADERS) comparing outcomes from BP-DES with DP-SES at four years. The primary endpoint (MACE) comprised cardiac death, MI, or target lesion revascularisation (TLR). Secondary endpoints were TLR, cardiac death or MI, and definite or probable stent thrombosis. Of 497 patients with STEMI, 291 received BP-DES and 206 DP-SES. At four years, MACE was significantly reduced following treatment with BP-DES (hazard ratio [HR] 0.59, 95% CI: 0.39-0.90; p=0.01) driven by reduced TLR (HR 0.54, 95% CI: 0.30-0.98; p=0.04). Trends towards reduction were seen for cardiac death or MI (HR 0.63, 95% CI: 0.37-1.05; p=0.07) and definite or probable stent thrombosis (3.6% vs. 7.1%; HR 0.49, 95% CI: 0.22-1.11; p=0.09). Conclusions: In STEMI, BP-DES demonstrated superior clinical outcomes to DP-SES at four years. Trends towards reduced cardiac death or myocardial infarction and reduced stent thrombosis require corroboration in specifically powered trials.