130 resultados para replacement
Resumo:
OBJECTIVE: The implantation of a composite graft is the treatment of choice for patients with aortic root disease if the valve cannot be preserved and the patient is not a suitable candidate for a Ross procedure. Several years ago, the Shelhigh NR-2000C (Shelhigh, Inc, Millburn, NJ) was introduced in Europe. Being a totally biologic conduit and considering the lack of homografts, the graft seemed an ideal conduit for patients with destructive endocarditis, as well as for older patients who were not suitable candidates for oral anticoagulation. METHODS: From 2001 until 2006, the Shelhigh NR-2000C stentless valved conduit was implanted in 115 patients for various aortic root pathologies. The conduit consists of a bovine pericardial straight graft with an incorporated porcine stentless valve. Aortic root repair was performed during standard cardiopulmonary bypass and mild hypothermia in the majority of patients. Deep hypothermic circulatory arrest combined with selective antegrade cerebral perfusion was used when the repair extended into the arch. RESULTS: Seven patients with uncomplicated early outcome presented with unexpected sudden disastrous findings at the level of the aortic root, although 1-year follow-up computed tomographic scans were normal. Four of these patients underwent emergency operations because of desintegration of the graft, along with rupture of the aortic root. Retrospectively, the main findings were persistent fever or subfebrility over months and a halo-like enhancement on computed tomographic scans. Extensive microbiologic examinations were performed without finding a causative organism. CONCLUSION: The use of the Shelhigh aortic stentless conduit can no longer be advocated, and meticulous follow-up of patients in whom this device has been implanted has to be recommended.
Resumo:
Tricuspid regurgitation following heart transplantation can become a severe problem in a subset of patients, where medical therapy fails. Operative findings are described and results of subsequent results with surgical intervention including repair and replacement are analysed. Although follow-up is short, tricuspid replacement seems superior to reconstruction following heart transplantation. Best results are obtained, if replacement is performed, before right ventricular function deteriorates.
Resumo:
BACKGROUND: Regression of left ventricular (LV) hypertrophy with normalization of diastolic function has been reported in patients with aortic stenosis late after aortic valve replacement (AVR). The purpose of the present study was to evaluate the effect of AVR on LV function and structure in chronic aortic regurgitation early and late after AVR. METHODS AND RESULTS: Twenty-six patients were included in the present analysis. Eleven patients with severe aortic regurgitation were studied before, early (21 months) and late (89 months) after AVR through the use of LV biplane angiograms, high-fidelity pressure measurements, and LV endomyocardial biopsies. Fifteen healthy subjects were used as controls. LV systolic function was determined from biplane ejection fraction and midwall fractional shortening. LV diastolic function was calculated from the time constant of LV relaxation, peak filling rates, and myocardial stiffness constant. LV structure was assessed from muscle fiber diameter, interstitial fibrosis, and fibrous content. LV muscle mass decreased significantly by 38% early and 55% late after surgery. Ejection fraction was significantly reduced preoperatively and did not change after AVR (P=NS). LV relaxation was significantly prolonged before surgery (89+/-28 ms) but was normalized late after AVR (42+/-14 ms). Early and late peak filling rates were increased preoperatively but normalized postoperatively. Diastolic stiffness constant was increased before surgery (22+/-6 versus 9+/-3 in control subjects; P=0.0003) and remained elevated early and late after AVR (23+/-4; P=0.002). Muscle fiber diameter decreased significantly after AVR but remained increased at late follow-up. Interstitial fibrosis was increased preoperatively and increased even further early but decreased late after AVR. Fibrosis was positively linearly correlated to myocardial stiffness and inversely correlated to LV ejection fraction. CONCLUSIONS: Patients with aortic regurgitation show normalization of macroscopic LV hypertrophy late after AVR, although fiber hypertrophy persists. These changes in LV myocardial structure late after AVR are accompanied by a change in passive elastic properties with persistent diastolic dysfunction.
Resumo:
BACKGROUND: Transcatheter aortic valve implantation (TAVI) for high-risk and inoperable patients with severe aortic stenosis is an emerging procedure in cardiovascular medicine. Little is known of the impact of TAVI on renal function. METHODS: We analysed retrospectively renal baseline characteristics and outcome in 58 patients including 2 patients on chronic haemodialysis undergoing TAVI at our institution. Acute kidney injury (AKI) was defined according to the RIFLE classification. RESULTS: Fifty-eight patients with severe symptomatic aortic stenosis not considered suitable for conventional surgical valve replacement with a mean age of 83 +/- 5 years underwent TAVI. Two patients died during transfemoral valve implantation and two patients in the first month after TAVI resulting in a 30-day mortality of 6.9%. Vascular access was transfemoral in 46 patients and transapical in 12. Estimated glomerular filtration rate (eGFR) increased in 30 patients (56%). Fifteen patients (28%) developed AKI, of which four patients had to be dialyzed temporarily and one remained on chronic renal replacement therapy. Risk factors for AKI comprised, among others, transapical access, number of blood transfusions, postinterventional thrombocytopaenia and severe inflammatory response syndrome (SIRS). CONCLUSIONS: TAVI is feasible in patients with a high burden of comorbidities and in patients with pre-existing end-stage renal disease who would be otherwise not considered as candidates for conventional aortic valve replacement. Although GFR improved in more than half of the patients, this benefit was associated with a risk of postinterventional AKI. Future investigations should define preventive measures of peri-procedural kidney injury.
Resumo:
AIMS: It is unclear whether transcatheter aortic valve implantation (TAVI) addresses an unmet clinical need for those currently rejected for surgical aortic valve replacement (SAVR) and whether there is a subgroup of high-risk patients benefiting more from TAVI compared to SAVR. In this two-centre, prospective cohort study, we compared baseline characteristics and 30-day mortality between TAVI and SAVR in consecutive patients undergoing invasive treatment for aortic stenosis. METHODS AND RESULTS: We pre-specified different adjustment methods to examine the effect of TAVI as compared with SAVR on overall 30-day mortality: crude univariable logistic regression analysis, multivariable analysis adjusted for baseline characteristics, analysis adjusted for propensity scores, propensity score matched analysis, and weighted analysis using the inverse probability of treatment (IPT) as weights. A total of 1,122 patients were included in the study: 114 undergoing TAVI and 1,008 patients undergoing SAVR. The crude mortality rate was greater in the TAVI group (9.6% vs. 2.3%) yielding an odds ratio [OR] of 4.57 (95%-CI 2.17-9.65). Compared to patients undergoing SAVR, patients with TAVI were older, more likely to be in NYHA class III and IV, and had a considerably higher logistic EuroSCORE and more comorbid conditions. Adjusted OR depended on the method used to control for confounding and ranged from 0.60 (0.11-3.36) to 7.57 (0.91-63.0). We examined the distribution of propensity scores and found scores to overlap sufficiently only in a narrow range. In patients with sufficient overlap of propensity scores, adjusted OR ranged from 0.35 (0.04-2.72) to 3.17 (0.31 to 31.9). In patients with insufficient overlap, we consistently found increased odds of death associated with TAVI compared with SAVR irrespective of the method used to control confounding, with adjusted OR ranging from 5.88 (0.67-51.8) to 25.7 (0.88-750). Approximately one third of patients undergoing TAVI were found to be potentially eligible for a randomised comparison of TAVI versus SAVR. CONCLUSIONS: Both measured and unmeasured confounding limit the conclusions that can be drawn from observational comparisons of TAVI versus SAVR. Our study indicates that TAVI could be associated with either substantial benefits or harms. Randomised comparisons of TAVI versus SAVR are warranted.
Resumo:
OBJECTIVES: Pulmonary valve insufficiency remains a leading cause for reoperations in congenital cardiac surgery. The current percutaneous approach is limited by the size of the access vessel and variable right ventricular outflow tract morphology. This study assesses the feasibility of transapical pulmonary valve replacement based on a new valved stent construction concept. METHODS: A new valved stent design was implanted off-pump under continuous intracardiac echocardiographic and fluoroscopic guidance into the native right ventricular outflow tract in 8 pigs (48.5 +/- 6.0 kg) through the right ventricular apex, and device function was studied by using invasive and noninvasive measures. RESULTS: Procedural success was 100% at the first attempt. Procedural time was 75 +/- 15 minutes. All devices were delivered at the target site with good acute valve function. No valved stents dislodged. No animal had significant regurgitation or paravalvular leaking on intracardiac echocardiographic analysis. All animals had a competent tricuspid valve and no signs of right ventricular dysfunction. The planimetric valve orifice was 2.85 +/- 0.32 cm(2). No damage to the pulmonary artery or structural defect of the valved stents was found at necropsy. CONCLUSIONS: This study confirms the feasibility of direct access valve replacement through the transapical procedure for replacement of the pulmonary valve, as well as validity of the new valved stent design concept. The transapical procedure is targeting a broader patient pool, including the very young and the adult patient. The device design might not be restricted to failing conduits only and could allow for implantation in a larger patient population, including those with native right ventricular outflow tract configurations.
Resumo:
Adult growth hormone (GH) deficiency is associated with a lipid profile known to be related to atherosclerosis. GH replacement therapy improves the lipid profile with the exception of lipoprotein (a) concentrations, which tend to increase after GH therapy. Plasma lipid concentrations depend on its plasma carriers, the lipoproteins. Possible mechanisms involved in the dyslipidaemia of GH-deficient patients and the effects of GH replacement therapy are discussed with a special focus on hepatic lipoprotein metabolism.
Resumo:
GH replacement therapy has been shown to improve the dyslipidemic condition in a substantial proportion of patients with adult GH deficiency. The mechanisms are not yet fully elucidated. Low-density lipoprotein (LDL) apolipoprotein B100 (apoB) formation and catabolism are important determinants of plasma cholesterol concentrations. This study examined the effect of GH replacement therapy on LDL apoB metabolism using a stable isotope turnover technique. LDL apoB kinetics was determined in 13 adult patients with GH deficiency before and after 3 months GH/placebo treatment in a randomized, double-blind, placebo-controlled study. LDL apoB (13)C-leucine enrichment was determined by isotope-ratio mass spectrometry. Plasma volume was assessed by standardized radionuclide dilution technique. GH replacement therapy significantly decreased LDL cholesterol, LDL apoB concentrations, and LDL apoB pool size compared with placebo. Compared with baseline, GH replacement therapy resulted in a significant increase in plasma volume and fractional catabolic rate, whereas LDL formation rate remained unchanged. LDL lipid content did not significantly change after GH and placebo. This study suggests that short-term GH replacement therapy decreases the LDL apoB pool by increasing removal of LDL particles without changing LDL composition or LDL apoB production rate. In addition, it is possible that the beneficial effects of GH on the cardiovascular system contribute to these findings.