67 resultados para phosphorylated


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial phosphoenolpyruvate: sugar phosphotransferase system serves the combined uptake and phosphorylation of carbohydrates. This structurally and functionally complex system is composed of several conserved functional units that, through a cascade of phosphorylated intermediates, catalyze the transfer of the phosphate moiety from phosphoenolpyruvate to the substrate, which is bound to the integral membrane domain IIC. The wild-type glucose-specific IIC domain (wt-IIC(glc)) of Escherichia coli was cloned, overexpressed and purified for biochemical and functional characterization. Size-exclusion chromatography and scintillation-proximity binding assays showed that purified wt-IIC(glc) was homogenous and able to bind glucose. Crystallization was pursued following two different approaches: (i) reconstitution of wt-IIC(glc) into a lipid bilayer by detergent removal through dialysis, which yielded tubular 2D crystals, and (ii) vapor-diffusion crystallization of detergent-solubilized wt-IIC(glc), which yielded rhombohedral 3D crystals. Analysis of the 2D crystals by cryo-electron microscopy and the 3D crystals by X-ray diffraction indicated resolutions of better than 6Å and 4Å, respectively. Furthermore, a complete X-ray diffraction data set could be collected and processed to 3.93Å resolution. These 2D and 3D crystals of wt-IIC(glc) lay the foundation for the determination of the first structure of a bacterial glucose-specific IIC domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To determine the effect of the use of iodinated contrast agents on the formation of DNA double-strand breaks during chest computed tomography (CT). MATERIALS AND METHODS This study was approved by the institutional review board, and written informed consent was obtained from all patients. This single-center study was performed at a university hospital. A total of 179 patients underwent contrast material-enhanced CT, and 66 patients underwent unenhanced CT. Blood samples were taken from these patients prior to and immediately after CT. In these blood samples, the average number of phosphorylated histone H2AX (γH2AX) foci per lymphocyte was determined with fluorescence microscopy. Significant differences between the number of foci that developed in both the presence and the absence of the contrast agent were tested by using an independent sample t test. RESULTS γH2AX foci levels were increased in both groups after CT. Patients who underwent contrast-enhanced CT had an increased amount of DNA radiation damage (mean increase ± standard error of the mean, 0.056 foci per cell ± 0.009). This increase was 107% ± 19 higher than that in patients who underwent unenhanced CT (mean increase, 0.027 foci per cell ± 0.014). CONCLUSION The application of iodinated contrast agents during diagnostic x-ray procedures, such as chest CT, leads to a clear increase in the level of radiation-induced DNA damage as assessed with γH2AX foci formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoptosis plays an important role in intervertebral disc degeneration (IDD). Overwhelming evidence indicates that RASSF7 is essential for cell growth and apoptosis. Recently, it has been noted that the JNK signaling can be negatively regulated by suppressing phosphorylated-MKK7 activation during pro-apoptosis. We aimed to investigate the RASSF7 expression level in human degenerative nucleus pulposus (NP) cells and non-degenerative NP cells and the link between RASSF7-JNK with NP cells apoptosis. We harvested NP tissues from 20 IDD patients as disease group and 8 cadaveric donors as normal controls. We detected RASSF7 expression by Real-time-PCR and western blotting. Consequently, we found that the expression of RASSF7 was higher in non-degenerative group than in degenerative group (P<0.05). Overexpression of RASSF7 in degenerative NP cells led to decreased apoptosis rate than that in scramble group (P<0.05). Collectively, our findings suggest that RASSF7 plays an important role in human IDD and RASSF7 might be potentially developed as a curative agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. RESULTS HERE, WE USE AN ASSAY THAT ALLOWS TO BIOCHEMICALLY PURIFY EXTENDING PROTRUSIONS OF CELLS MIGRATING IN RESPONSE TO THREE PROTOTYPICAL RECEPTORS: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. CONCLUSIONS The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Nociceptin in the peripheral circulation has been proposed to have an immunoregulatory role with regards to inflammation and pain. However, the mechanisms involved in its regulation are still not clear. The aim of this study was to investigate signalling pathways contributing to the regulation of the expression of nociceptin under inflammatory conditions. METHODS Mono Mac 6 cells (MM6) were cultured with or without phorbol-12-myristate-13-acetate (PMA). Prepronociceptin (ppNOC) mRNA was detected by RT-qPCR and extracellular nociceptin by fluorescent-enzyme immunoassay. Intracellular nociceptin and phosphorylated kinases were measured using flow cytometry. To evaluate the contribution of various signalling pathways to the regulation of ppNOC mRNA and nociceptin protein, cells were pre-treated with specific kinase inhibitors before co-culturing with PMA. RESULTS ppNOC mRNA was expressed in untreated MM6 at low concentrations. Exposure of cells to PMA upregulated ppNOC after nine h compared with controls without PMA (median normalized ratio with IQR: 0.18 (0.15-0.26) vs. 0 (0-0.02), P<0.01). Inhibition of mitogen-activated protein kinases specific for signal transduction reversed the PMA effects (all P<0.001). Induction of nociceptin protein concentrations in PMA stimulated MM6 was prevented predominantly by identity of ERK inhibitor (P<0.05). CONCLUSIONS Upregulation of nociceptin expression by PMA in MM6 cells involves several pathways. Underlying mechanisms involved in nociceptin expression may lead to new insights in the treatment of pain and inflammatory diseases.