117 resultados para operator neutral
Resumo:
Neutral particles with long decay paths that decay to many-particle final states represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS apparatus. The Hidden Valley scenario serves as an excellent setting for the purpose of exploring the challenges to the trigger posed by long-lived particles.
Resumo:
This article presents a new response time measure of evaluations, the Evaluative Movement Assessment (EMA). Two properties are verified for the first time in a response time measure: (a) mapping of multiple attitude objects to a single scale, and (b) centering that scale around a neutral point. Property (a) has implications when self-report and response time measures of attitudes have a low correlation. A study using EMA as an indirect measure revealed a low correlation with self-reported attitudes when the correlation reflected between-subjects differences in preferences for one attitude object to a second. Previously this result may have been interpreted as dissociation between two measures. However, when correlations from the same data reflected within-subject preference rank orders between multiple attitude objects, they were substantial (average r = .64). This result suggests that the presence of low correlations between self-report and response time measures in previous studies may be a reflection of methodological aspects of the response time measurement techniques. Property (b) has implications for exploring theoretical questions that require assessment of whether an evaluation is positive or negative (e.g., prejudice), because it allows such classifications in response time measurement to be made for the first time.
Resumo:
We discuss non-geometric supersymmetric heterotic string models in D=4, in the framework of the free fermionic construction. We perform a systematic scan of models with four a priori left-right asymmetric Z2 projections and shifts. We analyze some 220 models, identifying 18 inequivalent classes and addressing variants generated by discrete torsions. They do not contain geometrical or trivial neutral moduli, apart from the dilaton. However, we show the existence of flat directions in the form of exactly marginal deformations and identify patterns of symmetry breaking where product gauge groups, realized at level one, are broken to their diagonal at higher level. We also describe an “inverse Gepner map” from Heterotic to Type II models that could be used, in certain non geometric settings, to define “effective” topological invariants.
Resumo:
Since the Moon is not shielded by a global magnetic field or by an atmosphere, solar wind plasma impinges onto the lunar surface almost unhindered. Until recently, it was assumed that almost all of the impinging solar wind ions are absorbed by the surface. However, recent Interstellar Boundary Explorer, Chandrayaan-1, and Kaguya observations showed that the interaction process between the solar wind ions and the lunar surface is more complex than previously assumed. In contrast to previous assumptions, a large fraction of the impinging solar wind ions is backscattered as energetic neutral atoms. Using the complete Chandrayaan-1 Energetic Neutral Analyzer data set, we compute a global solar wind reflection ratio of 0.16 ± 0.05 from the lunar surface. Since these backscattered neutral particles are not affected by any electric or magnetic fields, each particle's point of origin on the lunar surface can be determined in a straight-forward manner allowing us to create energetic neutral atom maps of the lunar surface. The energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer cover ˜89% of the lunar surface, whereby the lunar farside is almost completely covered. We analyzed all available energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer to create the first global energetic neutral hydrogen maps of the lunar surface.
Resumo:
We re-analyze the signal of non-planetary energetic neutral atoms (ENAs) in the 0.4-5.0 keV range measured with the Neutral Particle Detector (NPD) of the ASPERA-3 and ASPERA-4 experiments on board the Mars and Venus Express satellites. Due to improved knowledge of sensor characteristics and exclusion of data sets affected by instrument effects, the typical intensity of the ENA signal obtained by ASPERA-3 is an order of magnitude lower than in earlier reports. The ENA intensities measured with ASPERA-3 and ASPERA-4 now agree with each other. In the present analysis, we also correct the ENA signal for Compton-Getting and for ionization loss processes under the assumption of a heliospheric origin. We find spectral shapes and intensities consistent with those measured by the Interstellar Boundary Explorer (IBEX). The principal advantage of ASPERA with respect to the IBEX sensors is the two times better spectral resolution. In this study, we discuss the physical significance of the spectral shapes and their potential variation across the sky. At present, these observations are the only independent test of the heliospheric ENA signal measured with IBEX in this energy range. The ASPERA measurements also allow us to check for a temporal variation of the heliospheric signal as they were obtained between 2003 and 2007, whereas IBEX has been operational since the end of 2008.