81 resultados para murine cytomegalovirus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Cytomegalovirus (CMV) retinitis is a major cause of visual impairment and blindness among patients with uncontrolled HIV infections. Whereas polymorphisms in interferon-lambda 3 (IFNL3, previously named IL28B) strongly influence the clinical course of hepatitis C, few studies examined the role of such polymorphisms in infections due to viruses other than hepatitis C virus. OBJECTIVES To analyze the association of newly identified IFNL3/4 variant rs368234815 with susceptibility to CMV-associated retinitis in a cohort of HIV-infected patients. DESIGN AND METHODS This retrospective longitudinal study included 4884 white patients from the Swiss HIV Cohort Study, among whom 1134 were at risk to develop CMV retinitis (CD4 nadir <100 /μl and positive CMV serology). The association of CMV-associated retinitis with rs368234815 was assessed by cumulative incidence curves and multivariate Cox regression models, using the estimated date of HIV infection as a starting point, with censoring at death and/or lost follow-up. RESULTS A total of 40 individuals among 1134 patients at risk developed CMV retinitis. The minor allele of rs368234815 was associated with a higher risk of CMV retinitis (log-rank test P = 0.007, recessive mode of inheritance). The association was still significant in a multivariate Cox regression model (hazard ratio 2.31, 95% confidence interval 1.09-4.92, P = 0.03), after adjustment for CD4 nadir and slope, HAART and HIV-risk groups. CONCLUSION We reported for the first time an association between an IFNL3/4 polymorphism and susceptibility to AIDS-related CMV retinitis. IFNL3/4 may influence immunity against viruses other than HCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND  Polymorphisms in the interferon-λ (IFNL) 3/4 region have been associated with reduced hepatitis C virus clearance. We explored the role of such polymorphisms on the incidence of CMV infection in solid-organ transplant (SOT) recipients. METHODS  Caucasian patients participating in the Swiss Transplant Cohort Study in 2008-2011 were included. A novel functional TT/-G polymorphism (rs368234815) in the CpG region upstream of IFNL3 was investigated. RESULTS  A total of 840 SOT recipients at risk for CMV were included, among whom 373 (44%) received antiviral prophylaxis. The 12-months cumulative incidence of CMV replication and disease were 0.44 and 0.08, respectively. Patient homozygous for the minor rs368234815 allele (-G/-G) tended to have a higher cumulative incidence of CMV replication (SHR=1.30 [95%CI 0.97-1.74], P=0.07) compared to other patients (TT/TT or TT/-G). The association was significant among patients followed by a preemptive approach (SHR=1.46 [1.01-2.12], P=0.047), especially in patients receiving an organ from a seropositive donor (D+, SHR=1.92 [95%CI 1.30-2.85], P=0.001), but not among those who received antiviral prophylaxis (SHR=1.13 [95%CI 0.70-1.83], P=0.6). These associations remained significant in multivariate competing risk regression models. CONCLUSIONS  Polymorphisms in the IFNL3/4 region influence susceptibility to CMV replication in SOT recipients, particularly in patients not receiving antiviral prophylaxis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the detection of expressed sequence tags that are similar to known galactosyltransferase sequences, we have isolated three novel UDP-galactose:beta-N-acetylglucosamine beta1, 3-galactosyltransferase (beta3GalT) genes from a mouse genomic library. The three genes, named beta3GalT-I, -II, and -III, encode type II transmembrane proteins of 326, 422, and 331 amino acids, respectively. The three proteins constitute a distinct subfamily as they do not share any sequence identity with other eucaryotic galactosyltransferases. Also, the entire protein-coding region of the three beta3GalT genes was contained in a single exon, which contrasts with the genomic organization of the beta1,4- and alpha1, 3-galactosyltransferase genes. The three beta3GalT genes were mainly expressed in brain tissue. The expression of the full-length murine genes as recombinant baculoviruses in insect cells revealed that the beta3GalT enzymes share the same acceptor specificity for beta-linked GlcNAc, although they differ in their Km for this acceptor and the donor UDP-Gal. The identification of beta3GalT genes emphasizes the structural diversity present in the galactosyltransferase gene family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saliva can reach mineralized surfaces in the oral cavity; however, the relationship between saliva and bone resorption is unclear. Herein, we examined whether saliva affects the process of osteoclastogenesis in vitro. We used murine bone marrow cultures to study osteoclast formation. The addition of fresh sterile saliva eliminated the formation of multinucleated cells that stained positive for tartrate-resistant acid phosphatase (TRAP). In line with the histochemical staining, saliva substantially reduced gene expression of cathepsin K, calcitonin receptor, and TRAP. Addition of saliva led to considerably decreased gene expression of receptor activator of nuclear factor kappa-B (RANK) and, to a lesser extent, that of c-fms. The respective master regulators of osteoclastogenesis (c-fos and NFATc1) and the downstream cell fusion genes (DC-STAMP and Atp6v0d2) showed decreased expression after the addition of saliva. Among the costimulatory molecules for osteoclastogenesis, only OSCAR showed decreased expression. In contrast, CD40, CD80, and CD86-all costimulatory molecules of phagocytic cells-were increasingly expressed with saliva. The phagocytic capacity of the cells was confirmed by latex bead ingestion. Based on these in vitro results, it can be concluded that saliva suppresses osteoclastogenesis and leads to the development of a phagocytic cell phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic angiosarcoma (AS) is a rare and highly aggressive tumor of endothelial origin with dismal prognosis. Studies of the molecular biology of AS and treatment options are limited as animal models are rare. We have previously shown that inducible knockout of Notch1 in mice leads to spontaneous formation of hepatic AS. The aims of this study were to: (1) establish and characterize a cell line derived from this murine AS, (2) identify molecular pathways involved in the pathogenesis and potential therapeutic targets, and (3) generate a tumor transplantation model. AS cells retained specific endothelial properties such as tube formation activity, as well as expression of CD31 and Von Willebrand factor. However, electron microscopy analysis revealed signs of dedifferentiation with loss of fenestrae and loss of contact inhibition. Microarray and pathway analysis showed substantial changes in gene expression and revealed activation of the Myc pathway. Exposing the AS cells to sorafenib reduced migration, filopodia dynamics, and cell proliferation but did not induce apoptosis. In addition, sorafenib suppressed ERK phosphorylation and expression of cyclin D2. Injection of AS cells into NOD/SCID mice resulted in formation of undifferentiated tumors, confirming the tumorigenic potential of these cells. In summary, we established and characterized a murine model of spontaneous AS formation and hepatic AS cell lines as a useful in vitro tool. Our data demonstrate antitumor activity of sorafenib in AS cells with potent inhibition of migration, filopodia formation, and cell proliferation, supporting further evaluation of sorafenib as a novel treatment strategy. In addition, AS cell transplantation provides a subcutaneous tumor model useful for in vivo preclinical drug testing.Laboratory Investigation advance online publication, 24 November 2014; doi:10.1038/labinvest.2014.141.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre-clinical studies using murine models are critical for understanding the pathophysiological mechanisms underlying immune-mediated disorders such as Eosinophilic esophagitis (EoE). In this study, an optical coherence tomography (OCT) system capable of providing three-dimensional images with axial and transverse resolutions of 5 µm and 10 µm, respectively, was utilized to obtain esophageal images from a murine model of EoE-like disease ex vivo. Structural changes in the esophagus of wild-type (Tslpr(+/+) ) and mutant (Tslpr(-/-) ) mice with EoE-like disease were quantitatively evaluated and food impaction sites in the esophagus of diseased mice were monitored using OCT. Here, the capability of OCT as a label-free imaging tool devoid of tissue-processing artifacts to effectively characterize murine EoE-like disease models has been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alveolar echinococcosis (AE) is caused by infection with the larval stage of the tapeworm Echinococcus multilocularis. An increasing understanding of immunological events that account for the metacestode survival in human and murine AE infection prompted us to undertake explorative experiments tackling the potential of novel preventive and/or immunotherapeutic measures. In this study, the immunoprotective and immunotherapeutic ability of recombinant EmP29 antigen (rEmP29) was assessed in mice that were intraperitoneally infected with E. multilocularis metacestodes. For vaccination, three intraperitoneal injections with 20μg rEmP29 emulsified in saponin adjuvants were applied over 6 weeks. 2 weeks after the last boost, mice were infected, and at 90 days post-infection, rEmP29-vaccinated mice exhibited a median parasite weight that was reduced by 75% and 59% when compared to NaCl- or saponin-treated control mice, respectively. For immunotherapeutical application, the rEmP29 (20μg) vaccine was administered to experimentally infected mice, starting at 1 month post-infection, three times with 2 weeks intervals. Mice undergoing rEmP29 immunotherapy exhibited a median parasite load that was reduced by 53% and 49% when compared to NaCl- and saponin-treated control mice, respectively. Upon analysis of spleen cells, both, vaccination and treatment with rEmP29, resulted in low ratios of Th2/Th1 (IL-4/IFN-γ) cytokine mRNA and low levels of mRNA coding for IL-10 and IL-2. These results suggest that reduction of the immunosuppressive environment takes place in vaccinated as well as immunotreated mice, and a shift towards a Th1 type of immune response may be responsible for the observed increased restriction of parasite growth. The present study provides the first evidence that active immunotherapy may present a sustainable route for the control of AE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Cytomegalovirus (CMV) is associated with an increased risk of cardiac allograft vasculopathy (CAV), the major limiting factor for long-term survival after heart transplantation (HTx). The purpose of this study was to evaluate the impact of CMV infection during long-term follow-up after HTx. METHODS A retrospective, single-centre study analyzed 226 HTx recipients (mean age 45 ± 13 years, 78 % men) who underwent transplantation between January 1988 and December 2000. The incidence and risk factors for CMV infection during the first year after transplantation were studied. Risk factors for CAV were included in an analyses of CAV-free survival within 10 years post-transplant. The effect of CMV infection on the grade of CAV was analyzed. RESULTS Survival to 10 years post-transplant was higher in patients with no CMV infection (69 %) compared with patients with CMV disease (55 %; p = 0.018) or asymptomatic CMV infection (54 %; p = 0.053). CAV-free survival time was higher in patients with no CMV infection (6.7 years; 95 % CI, 6.0-7.4) compared with CMV disease (4.2 years; CI, 3.2-5.2; p < 0.001) or asymptomatic CMV infection (5.4 years; CI, 4.3-6.4; p = 0.013). In univariate analysis, recipient age, donor age, coronary artery disease (CAD), asymptomatic CMV infection and CMV disease were significantly associated with CAV-free survival. In multivariate regression analysis, CMV disease, asymptomatic CMV infection, CAD and donor age remained independent predictors of CAV-free survival at 10 years post-transplant. CONCLUSIONS CAV-free survival was significantly reduced in patients with CMV disease and asymptomatic CMV infection compared to patients without CMV infection. These findings highlight the importance of close monitoring of CMV viral load and appropriate therapeutic strategies for preventing asymptomatic CMV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Osteoclasts rapidly form on the surface of bone chips at augmentation sites. The underlying molecular mechanism, however, is unclear. Soluble factors released from bone chips in vitro have a robust impact on mesenchymal cell differentiation. Whether these soluble factors change the differentiation of hematopoietic cells into osteoclasts remains unknown. METHODS Osteoclastogenesis, the formation of tartrate-resistant acid phosphatase-positive multinucleated cells, was studied with murine bone marrow cultures exposed to RANKL and M-CSF, and conditioned medium from fresh (BCM) and demineralized bone matrix (DCM). Histochemical staining, gene and protein expression, as well as viability assays were performed. RESULTS This study shows that BCM had no impact on osteoclastogenesis. However, when BCM was heated to 85°C (BCMh), the number of tartrate-resistant acid phosphatase-positive multinucleated cells that developed in the presence of RANKL and M-CSF approximately doubled. In line with the histochemical observations, there was a trend that BCMh increased expression of osteoclast marker genes, in particular the transcription factor c-fos. The expression of c-fos was significantly reduced by the TGF-β receptor I antagonist SB431542. DCM significantly stimulated osteoclastogenesis, independent of thermal processing. CONCLUSIONS These data demonstrate that activated BCM by heat and DBM are able to stimulate osteoclastogenesis in vitro. These in vitro results support the notion that the resorption of autografts may be supported by as yet less defined paracrine mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waddlia chondrophila is a known bovine abortigenic Chlamydia-related bacterium that has been associated with adverse pregnancy outcomes in human. However, there is a lack of knowledge regarding how W. chondrophila infection spreads, its ability to elicit an immune response and induce pathology. A murine model of genital infection was developed to investigate the pathogenicity and immune response associated with a W. chondrophila infection. Genital inoculation of the bacterial agent resulted in a dose-dependent infection that spread to lumbar lymph nodes and successively to spleen and liver. Bacterial-induced pathology peaked on day 14, characterized by leukocyte infiltration (uterine horn, liver, and spleen), necrosis (liver) and extramedullary hematopoiesis (spleen). Immunohistochemistry demonstrated the presence of a large number of W. chondrophila in the spleen on day 14. Robust IgG titers were detected by day 14 and remained high until day 52. IgG isotypes consisted of high IgG2a, moderate IgG3 and no detectable IgG1, indicating a Th1-associated immune response. This study provides the first evidence that W. chondrophila genital infection is capable of inducing a systemic infection that spreads to major organs, induces uterus, spleen, and liver pathology and elicits a Th1-skewed humoral response. This new animal model will help our understanding of the mechanisms related to intracellular bacteria-induced miscarriages, the most frequent complication of pregnancy that affects one in four women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Lymphedema is an underdiagnosed pathology which in industrialized countries mainly affects cancer patients that underwent lymph node dissection and/or radiation. Currently no effective therapy is available so that patients' life quality is compromised by swellings of the concerned body region. This unfortunate condition is associated with body imbalance and subsequent osteochondral deformations and impaired function as well as with an increased risk of potentially life threatening soft tissue infections. METHODS The effects of PRP and ASC on angiogenesis (anti-CD31 staining), microcirculation (Laser Doppler Imaging), lymphangiogenesis (anti-LYVE1 staining), microvascular architecture (corrosion casting) and wound healing (digital planimetry) are studied in a murine tail lymphedema model. RESULTS Wounds treated by PRP and ASC healed faster and showed a significantly increased epithelialization mainly from the proximal wound margin. The application of PRP induced a significantly increased lymphangiogenesis while the application of ASC did not induce any significant change in this regard. CONCLUSIONS PRP and ASC affect lymphangiogenesis and lymphedema development and might represent a promising approach to improve regeneration of lymphatic vessels, restore disrupted lymphatic circulation and treat or prevent lymphedema alone or in combination with currently available lymphedema therapies.