70 resultados para modeling of data sources
Resumo:
Quality data are not only relevant for successful Data Warehousing or Business Intelligence applications; they are also a precondition for efficient and effective use of Enterprise Resource Planning (ERP) systems. ERP professionals in all kinds of businesses are concerned with data quality issues, as a survey, conducted by the Institute of Information Systems at the University of Bern, has shown. This paper demonstrates, by using results of this survey, why data quality problems in modern ERP systems can occur and suggests how ERP researchers and practitioners can handle issues around the quality of data in an ERP software Environment.
Resumo:
Project justification is regarded as one of the major methodological deficits in Data Warehousing practice. As reasons for applying inappropriate methods, performing incomplete evaluations, or even entirely omitting justifications, the special nature of Data Warehousing benefits and the large portion of infrastructure-related activities are stated. In this paper, the economic justification of Data Warehousing projects is analyzed, and first results from a large academiaindustry collaboration project in the field of non-technical issues of Data Warehousing are presented. As conceptual foundations, the role of the Data Warehouse system in corporate application architectures is analyzed, and the specific properties of Data Warehousing projects are discussed. Based on an applicability analysis of traditional approaches to economic IT project justification, basic steps and responsibilities for the justification of Data Warehousing projects are derived.
Resumo:
The efficiency of sputtered refractory elements by H+ and He++ solar wind ions from Mercury's surface and their contribution to the exosphere are studied for various solar wind conditions. A 3D solar wind-planetary interaction hybrid model is used for the evaluation of precipitation maps of the sputter agents on Mercury's surface. By assuming a global mineralogical surface composition, the related sputter yields are calculated by means of the 2013 SRIM code and are coupled with a 3D exosphere model. Because of Mercury's magnetic field, for quiet and nominal solar wind conditions the plasma can only precipitate around the polar areas, while for extreme solar events (fast solar wind, coronal mass ejections, interplanetary magnetic clouds) the solar wind plasma has access to the entire dayside. In that case the release of particles form the planet's surface can result in an exosphere density increase of more than one order of magnitude. The corresponding escape rates are also about an order of magnitude higher. Moreover, the amount of He++ ions in the precipitating solar plasma flow enhances also the release of sputtered elements from the surface in the exosphere. A comparison of our model results with MESSENGER observations of sputtered Mg and Ca elements in the exosphere shows a reasonable quantitative agreement. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In the last decade, thanks to the development of sophisticated numerical codes, major breakthroughs have been achieved in our understanding of the formation of asteroid families by catastrophic disruption of large parent bodies. In this review, we describe numerical simulations of asteroid collisions that reproduced the main properties of families, accounting for both the fragmentation of an asteroid at the time of impact and the subsequent gravitational interactions of the generated fragments. The simulations demonstrate that the catastrophic disruption of bodies larger than a few hundred meters in diameter leads to the formation of large aggregates due to gravitational reaccumulation of smaller fragments, which helps explain the presence of large members within asteroid families. Thus, for the first time, numerical simulations successfully reproduced the sizes and ejection velocities of members of representative families. Moreover, the simulations provide constraints on the family dynamical histories and on the possible internal structure of family members and their parent bodies.
Reactive transport modeling of the Dixie Valley geothermal area: Insights on flow and geothermometry
Resumo:
Oxygen and hydrogen isotope analyses of rainfall samples collected on the eastern Batinah coastal plain of northern Oman between 1995 and 1998 indicate two different principal water vapor sources for precipitation in the area: a northern, Mediterranean source and a southern, Indian Ocean source. As a result, two new local meteoric water lines were defined for the study area. Isotopic analyses of groundwater samples from over 200 springs and wells indicate that the main source of water to the Batinah coastal alluvial aquifer is high-altitude rainfall from the adjacent Jabal Akhdar Mountains, originating from a combination of northern and southern moisture sources. The groundwater recharged at high-altitude forms two plumes of water which is depleted in the heavy isotopes 18O and 2H and stretches from the mountains across the coastal plain to the sea, thereby retaining a chemical homogeneity horizontally and vertically down to a depth exceeding 300 m. In contrast, in areas adjacent to these two plumes the alluvial aquifer is geochemically stratified. Near the coast, saline intrusion results in abrupt changes in chloride concentrations and isotope values.