72 resultados para last glacial maximum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in Greenland accumulation and the stability in the relationship between accumulation variability and large-scale circulation are assessed by performing time-slice simulations for the present day, the preindustrial era, the early Holocene, and the Last Glacial Maximum (LGM) with a comprehensive climate model. The stability issue is an important prerequisite for reconstructions of Northern Hemisphere atmospheric circulation variability based on accumulation or precipitation proxy records from Greenland ice cores. The analysis reveals that the relationship between accumulation variability and large-scale circulation undergoes a significant seasonal cycle. As the contributions of the individual seasons to the annual signal change, annual mean accumulation variability is not necessarily related to the same atmospheric circulation patterns during the different climate states. Interestingly, within a season, local Greenland accumulation variability is indeed linked to a consistent circulation pattern, which is observed for all studied climate periods, even for the LGM. Hence, it would be possible to deduce a reliable reconstruction of seasonal atmospheric variability (e.g., for North Atlantic winters) if an accumulation or precipitation proxy were available that resolves single seasons. We further show that the simulated impacts of orbital forcing and changes in the ice sheet topography on Greenland accumulation exhibit strong spatial differences, emphasizing that accumulation records from different ice core sites regarding both interannual and long-term (centennial to millennial) variability cannot be expected to look alike since they include a distinct local signature. The only uniform signal to external forcing is the strong decrease in Greenland accumulation during glacial (LGM) conditions and an increase associated with the recent rise in greenhouse gas concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric fluxes of iron (Fe) over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.�

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The end of the Last Glacial Maximum (Termination I), roughly 20 thousand years ago (ka), was marked by cooling in the Northern Hemisphere, a weakening of the Asian monsoon, a rise in atmospheric CO2 concentrations and warming over Antarctica. The sequence of events associated with the previous glacial–interglacial transition (Termination II), roughly 136 ka, is less well constrained. Here we present high-resolution records of atmospheric CO2 concentrations and isotopic composition of N2—an atmospheric temperature proxy—from air bubbles in the EPICA Dome C ice core that span Termination II. We find that atmospheric CO2 concentrations and Antarctic temperature started increasing in phase around 136 ka, but in a second phase of Termination II, from 130.5 to 129 ka, the rise in atmospheric CO2 concentrations lagged that of Antarctic temperature unequivocally. We suggest that during this second phase, the intensification of the low-latitude hydrological cycle resulted in the development of a CO2 sink, which counteracted the CO2 outgassing from the Southern Hemisphere oceans over this period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so-called Dansgaard–Oeschger (DO) events. The past atmospheric methane concentration closely followed these temperature variations, which implies that the warmings recorded in Greenland were probably hemispheric in extent. Here we substantially extend and complete the North Greenland Ice Core Project (NGRIP) methane record from the Preboreal Holocene (PB) back to the end of the last interglacial period with a mean time resolution of 54 yr. We relate the amplitudes of the methane increases associated with DO events to the amplitudes of the local Greenland NGRIP temperature increases derived from stable nitrogen isotope (δ15N) measurements, which have been performed along the same ice core (Kindler et al., 2014). We find the ratio to oscillate between 5 parts per billion (ppb) per °C and 18 ppb °C−1 with the approximate frequency of the precessional cycle. A remarkably high ratio of 25.5 ppb °C−1 is reached during the transition from the Younger Dryas (YD) to the PB. Analysis of the timing of the fast methane and temperature increases reveals significant lags of the methane increases relative to NGRIP temperature for DO events 5, 9, 10, 11, 13, 15, 19, and 20. These events generally have small methane increase rates and we hypothesize that the lag is caused by pronounced northward displacement of the source regions from stadial to interstadial. We further show that the relative interpolar concentration difference (rIPD) of methane is about 4.5% for the stadials between DO events 18 and 20, which is in the same order as in the stadials before and after DO event 2 around the Last Glacial Maximum. The rIPD of methane remains relatively stable throughout the full last glacial, with a tendency for elevated values during interstadial compared to stadial periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to reconstruct the temperature of the North Greenland Ice Core Project (NGRIP) site, new measurements of δ15N have been performed covering the time period from the beginning of the Holocene to Dansgaard–Oeschger (DO) event 8. Together with previously measured and mostly published δ15N data, we present for the first time a NGRIP temperature reconstruction for the whole last glacial period from 10 to 120 kyr b2k (thousand years before 2000 AD) including every DO event based on δ15N isotope measurements combined with a firn densification and heat diffusion model. The detected temperature rises at the onset of DO events range from 5 °C (DO 25) up to 16.5 °C (DO 11) with an uncertainty of ±3 °C. To bring measured and modelled data into agreement, we had to reduce the accumulation rate given by the NGRIP ss09sea06bm timescale in some periods by 30 to 35%, especially during the last glacial maximum. A comparison between reconstructed temperature and δ18Oice data confirms that the isotopic composition of the stadial was strongly influenced by seasonality. We evidence an anticorrelation between the variations of the δ18Oice sensitivity to temperature (referred to as α) and obliquity in agreement with a simple Rayleigh distillation model. Finally, we suggest that α might be influenced by the Northern Hemisphere ice sheet volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deglaciation history of the Swiss Alps after the Last Glacial Maximum involved the decay of several ice domes and the subsequent disintegration of valley glaciers at high altitude. Here we use bedrock exposure dating to reconstruct the temporal and spatial pattern of ice retreat at the Simplon Pass (altitude: ∼2000 m) located 40 km southwest of the ‘Rhône ice dome’. Eleven 10Be exposure ages from glacially polished quartz veins and ice-molded bedrock surfaces cluster tightly between 13.5 ± 0.6 ka and 15.4 ± 0.6 ka (internal errors) indicating that the Simplon Pass depression became ice-free at 14.1 ± 0.4 ka (external error of mean age). This age constraint is interpreted to record the melting of the high valley glaciers in the Simplon Pass region during the warm Bølling–Allerød interstadial shortly after the Oldest Dryas stadial. Two bedrock samples collected a few hundred meters above the pass depression yield older 10Be ages of 17.8 ± 0.6 ka and 18.0 ± 0.6 ka. These ages likely reflect the initial downwasting of the Rhône ice dome and the termination of the ice transfluence from the ice dome across the Simplon Pass toward the southern foreland. There, the retreat of the piedmont glacier in Val d’Ossola was roughly synchronous with the decay of the Rhône ice dome in the interior of the mountain belt, as shown by 10Be ages of 17.7 ± 0.9 ka and 16.1 ± 0.6 ka for a whaleback at ∼500 m elevation near Montecrestese in northern Italy. In combination with well-dated paleoclimate records derived from lake sediments, our new age data suggest that during the deglaciation of the European Alps the decay of ice domes was approximately synchronous with the retreat of piedmont glaciers in the foreland and was followed by the melting of high-altitude valley glaciers after the transition from the Oldest Dryas to the Bølling–Allerød, when mean annual temperatures rose rapidly by ∼3 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Swiss Deckenschotter (“cover gravels”) is the oldest Quaternary units in the northern Swiss Alpine Foreland. They are a succession of glaciofluvial gravel layers intercalated with glacial and/or overbank deposits. This lithostratigraphic sequence is called Deckenschotter because it “covers” Molasse or Mesozoic bedrock and forms mesa-type hill-tops. Deckenschotter occurs both within and beyond the extent of the Last Glacial Maximum glaciers. The Swiss Deckenschotter consist of two sub-units: Höhere (Higher) and Tiefere (Lower) Deckenschotter. Although the Höhere Deckenschotter sub-unit (HDS) is topographically higher than the Tiefere Deckenschotter, it is older. The only available age for the Swiss Deckenschotter is 2.5–1.8 Ma based on mammal remains found in HDS at the Irchel site. In this study, we present an exposure age for the topographically lowest HDS, calculated from a cosmogenic 10Be depth-profile. Our results show that the first phase of the Deckenschotter glaciations in the Swiss Alps terminated at least 1,020+80−120 ka ago, which is indicated by a significant fluvial incision. This line of evidence seems to be close to synchronous with the beginning of the Mid-Pleistocene Revolution, when the frequency of the glacial-interglacial cyclicity changed from 41 to 100 ka and the amplitude from low to high, between marine isotope stages 23 and 22.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim We used combined palaeobotanical and genetic data to assess whether Norway spruce (Picea abies) and Siberian spruce (Picea obovata), two major components of the Eurasian boreal forests, occupied separate glacial refugia, and to test previous hypotheses on their distinction, geographical delimitation and introgression. Location The range of Norway spruce in northern Europe and Siberian spruce in northern Asia. Methods Pollen data and recently compiled macrofossil records were summarized for the Last Glacial Maximum (LGM), late glacial and Holocene. Genetic variation was assessed in 50 populations using one maternally (mitochondrial nad1) and one paternally (chloroplast trnT–trnL) inherited marker and analysed using spatial analyses of molecular variance (SAMOVA). Results Macrofossils showed that spruce was present in both northern Europe and Siberia at the LGM. Congruent macrofossil and pollen data from the late glacial suggested widespread expansions of spruce in the East European Plain, West Siberian Plain, southern Siberian mountains and the Baikal region. Colonization was largely completed during the early Holocene, except in the formerly glaciated area of northern Europe. Both DNA markers distinguished two highly differentiated groups that correspond to Norway spruce and Siberian spruce and coincide spatially with separate LGM spruce occurrences. The division of the mtDNA variation was geographically well defined and occurred to the east of the Ural Mountains along the Ob River, whereas the cpDNA variation showed widespread admixture. Genetic diversity of both DNA markers was higher in western than in eastern populations. Main conclusions North Eurasian Norway spruce and Siberian spruce are genetically distinct and occupied separate LGM refugia, Norway spruce on the East European Plain and Siberian spruce in southern Siberia, where they were already widespread during the late glacial. They came into contact in the basin of the Ob River and probably hybridized. The lower genetic diversity in the eastern populations may indicate that Siberian spruce suffered more from past climatic fluctuations than Norway spruce.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account, or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the Last Glacial Maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite dataset genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion, or to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM-contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lake sediments and pollen, spores and algae from the high-elevation endorheic Laguna Miscanti (22°45′S, 67°45′W, 4140 m a.s.l., 13.5 km2 water surface, 10 m deep) in the Atacama Desert of northern Chile provide information about abrupt and high amplitude changes in effective moisture. Although the lack of terrestrial organic macrofossils and the presence of a significant 14C reservoir effect make radiocarbon dating of lake sediments very difficult, we propose the following palaeoenvironmental history. An initial shallow freshwater lake (ca. 22,000 14C years BP) disappeared during the extremely dry conditions of the Last Glacial Maximum (LGM; 18,000 14C years BP). That section is devoid of pollen. The late-glacial lake transgression started around 12,000 14C years BP, peaked in two phases between ca. 11,000 and <9000 14C years BP, and terminated around 8000 14C years BP. Effective moisture increased more than three times compared to modern conditions (∼200 mm precipitation), and a relatively dense terrestrial vegetation was established. Very shallow hypersaline lacustrine conditions prevailed during the mid-Holocene until ca. 3600 14C years BP. However, numerous drying and wetting cycles suggest frequent changes in moisture, maybe even individual storms during the mid-Holocene. After several humid spells, modern conditions were reached at ca. 3000 14C years BP. Comparison between limnogeological data and pollen of terrestrial plants suggest century-scale response lags. Relatively constant concentrations of long-distance transported pollen from lowlands east of the Andes suggest similar atmospheric circulation patterns (mainly tropical summer rainfall) throughout the entire period of time. These findings compare favorably with other regional paleoenvironmental data.