99 resultados para humans
Resumo:
The aim of the present study was to develop a physiologically compatible inhalation solution of delta-9-tetrahydrocannabinol (THC), and to compare the pharmacokinetic and analgesic properties of pulmonal THC versus pulmonal placebo and intravenous (iv) THC, respectively. Eight healthy volunteers were included in this randomized, double-blind, crossover study. The aqueous THC formulations were prepared by using a solubilization technique. iv THC (0.053 mg/kg body weight), pulmonal THC (0.053 mg/kg), or a placebo inhalation solution was administered as single dose. At defined time points, blood samples were collected, and somatic and psychotropic side effects as well as vital functions monitored. An ice water immersion test was performed to measure analgesia. Using a pressure-driven nebulizer, the pulmonal administration of the THC liquid aerosol resulted in high THC peak plasma levels within minutes. The bioavailability of the pulmonal THC was 28.7 +/- 8.2% (mean +/- SEM). The side effects observed after pulmonal THC were coughing and slight irritation of the upper respiratory tract, very mild psychotropic symptoms, and headache. The side effects after iv THC were much more prominent. Neither pulmonal nor iv THC significantly reduced experimentally induced pain.
Resumo:
BACKGROUND: High sugar and fat intakes are known to increase intrahepatocellular lipids (IHCLs) and to cause insulin resistance. High protein intake may facilitate weight loss and improve glucose homeostasis in insulin-resistant patients, but its effects on IHCLs remain unknown. OBJECTIVE: The aim was to assess the effect of high protein intake on high-fat diet-induced IHCL accumulation and insulin sensitivity in healthy young men. DESIGN: Ten volunteers were studied in a crossover design after 4 d of either a hypercaloric high-fat (HF) diet; a hypercaloric high-fat, high-protein (HFHP) diet; or a control, isocaloric (control) diet. IHCLs were measured by (1)H-magnetic resonance spectroscopy, fasting metabolism was measured by indirect calorimetry, insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and plasma concentrations were measured by enzyme-linked immunosorbent assay and gas chromatography-mass spectrometry; expression of key lipogenic genes was assessed in subcutaneous adipose tissue biopsy specimens. RESULTS: The HF diet increased IHCLs by 90 +/- 26% and plasma tissue-type plasminogen activator inhibitor-1 (tPAI-1) by 54 +/- 11% (P < 0.02 for both) and inhibited plasma free fatty acids by 26 +/- 11% and beta-hydroxybutyrate by 61 +/- 27% (P < 0.05 for both). The HFHP diet blunted the increase in IHCLs and normalized plasma beta-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not altered, whereas the expression of sterol regulatory element-binding protein-1c and key lipogenic genes increased with the HF and HFHP diets (P < 0.02). Bile acid concentrations remained unchanged after the HF diet but increased by 50 +/- 24% after the HFHP diet (P = 0.14). CONCLUSIONS: Protein intake significantly blunts the effects of an HF diet on IHCLs and tPAI-1 through effects presumably exerted at the level of the liver. Protein-induced increases in bile acid concentrations may be involved. This trial was registered at www.clinicaltrials.gov as NCT00523562.
Resumo:
The genetic determinants and phenotypic traits which make a Staphylococcus aureus strain a successful colonizer are largely unknown. The genetic diversity and population structure of 133 S. aureus isolates from healthy, generally risk-free adult carriers were investigated using four different typing methods: multilocus sequence typing (MLST), amplified fragment length polymorphism analysis (AFLP), double-locus sequence typing (DLST), and spa typing were compared. Carriage isolates displayed great genetic diversity which could only be revealed fully by DLST. Results of AFLP and MLST were highly concordant in the delineation of genotypic clusters of closely related isolates, roughly equivalent to clonal complexes. spa typing and DLST provided considerably less phylogenetic information. The resolution of spa typing was similar to that of AFLP and inferior to that of DLST. AFLP proved to be the most universal method, combining a phylogeny-building capacity similar to that of MLST with a much higher resolution. However, it had a lower reproducibility than sequencing-based MLST, DLST, and spa typing. We found two cases of methicillin-resistant S. aureus colonization, both of which were most likely associated with employment at a health service. Of 21 genotypic clusters detected, 2 were most prevalent: cluster 45 and cluster 30 each colonized 24% of the carrier population. The number of bacteria found in nasal samples varied significantly among the clusters, but the most prevalent clusters were not particularly numerous in the nasal samples. We did not find much evidence that genotypic clusters were associated with different carrier characteristics, such as age, sex, medical conditions, or antibiotic use. This may provide empirical support for the idea that genetic clusters in bacteria are maintained in the absence of adaptation to different niches. Alternatively, carrier characteristics other than those evaluated here or factors other than human hosts may exert selective pressure maintaining genotypic clusters.
Resumo:
Six previously published polymerase chain reaction (PCR) assays each targeting different genes were used to speciate 116 isolates previously identified as Campylobacter jejuni using routine microbiological techniques. Of the 116 isolates, 84 were of poultry origin and 32 of human origin. The six PCR assays confirmed the species identities of 31 of 32 (97%) human isolates and 56 of 84 (67%) poultry isolates as C. jejuni. Twenty eight of 84 (33%) poultry isolates were identified as Campylobacter coli and the remaining human isolate was tentatively identified as Campylobacter upsaliensis based on the degree of similarity of 16S rRNA gene sequences. Four of six published PCR assays showed 100% concordance in their ability to speciate 113 of the 116 (97.4%) isolates; two assays failed to generate a PCR product with four to 10 isolates. A C. coli-specific PCR identified all 28 hippuricase gene (hipO)-negative poultry isolates as C. coli although three isolates confirmed to be C. jejuni by the remaining five assays were also positive in this assay. A PCR-restriction fragment length polymorphism assay based on the 16S rRNA gene was developed, which contrary to the results of the six PCR-based assays, identified 28 of 29 hipO-negative isolates as C. jejuni. DNA sequence analysis of 16S rRNA genes from four hipO-negative poultry isolates showed they were almost identical to the C. jejuni type strain 16S rRNA sequences ATCC43431 and ATCC33560 indicating that assays reliant on 16S rRNA sequence may not be suitable for the differentiation of these two species.
Resumo:
OBJECTIVE This study tested the hypotheses that intermittent coronary sinus occlusion (iCSO) reduces myocardial ischaemia, and that the amount of ischaemia reduction is related to coronary collateral function. DESIGN Prospective case-control study with intraindividual comparison of myocardial ischaemia during two 2-min coronary artery balloon occlusions with and without simultaneous iCSO by a balloon-tipped catheter. SETTING University Hospital. PATIENTS 35 patients with chronic stable coronary artery disease. INTERVENTION 2-min iCSO. MAIN OUTCOME MEASURES Myocardial ischaemia as assessed by intracoronary (i.c.) ECG ST shift at 2 min of coronary artery balloon occlusion. Collateral flow index (CFI) without iCSO, that is, the ratio between mean distal coronary occlusive (Poccl) and mean aortic pressure (Pao) both minus central venous pressure. RESULTS I.c. ECG ST segment shift (elevation in all) at the end of the procedure with iCSO versus without iCSO was 1.33±1.25 mV versus 1.85±1.45 mV, p<0.0001. Regression analysis showed that the degree of i.c. ECG ST shift reduction during iCSO was related to CFI, best fitting a Lorentzian function (r(2)=0.61). Ischaemia reduction with iCSO was greatest at a CFI of 0.05-0.20, whereas in the low and high CFI range the effect of iCSO was absent. CONCLUSIONS ICSO reduces myocardial ischaemia in patients with chronic coronary artery disease. Ischaemia reduction by iCSO depends on coronary collateral function. A minimal degree of collateral function is necessary to render iCSO effective. ICSO cannot manifest an effect when collateral function prevents ischaemia in the first place.
Resumo:
BACKGROUND IL-33 enhances FcεRI-induced mediator release in human basophils without inducing degranulation itself. In contrast, studies in mice suggested that in the presence of high IgE levels, IL-33 triggers degranulation and anaphylaxis of similar severity as specific allergen. Consistent with this view, sera of atopic patients contain elevated levels of IL-33 after anaphylaxis. In this study, we determined whether IL-33 is potentially anaphylactogenic in humans with high IgE levels by regulating exocytosis independent of FcεRI cross-linking. Furthermore, we investigated whether IL-33 is released upon allergen provocation in vivo. METHODS In subjects with high serum IgE levels, we measured IL-33-induced histamine/LTC4 in vitro, CD63 translocation ex vivo, and responsiveness of mast cells in vivo by skin prick test (SPT). In asthma patients, release of IL-33 and its correlation with early (tryptase)- and late-phase markers (IL-13 levels, eosinophil numbers) of the allergic response were assessed in bronchoalveolar lavage fluids (BALFs) after allergen challenge. RESULTS IL-33 itself does not trigger basophil degranulation in vitro and ex vivo, even in subjects with high serum IgE levels, and negative SPTs demonstrate that skin mast cells do not degranulate in response to IL-33. However, in response to allergen challenge, IL-33 is rapidly released into BALFs at levels that do not correlate with other immediate- and late-phase parameters. CONCLUSION IL-33 is unlikely an independent trigger of anaphylaxis even in subjects with high IgE levels. However, the rapid release of IL-33 upon allergen provocation in vivo supports its role as a mediator of immediate allergic responses.
Resumo:
AIMS Recent data have demonstrated the feasibility of therapeutic induction of coronary collateral growth (arteriogenesis); however, mechanisms of action of such therapeutic collateral stimulation in humans are unknown. The aim of this study was to evaluate potential mechanisms, especially the involvement of arteriogenesis-relevant genes. METHODS AND RESULTS A total of 52 patients were randomized into two groups: subcutaneous G-CSF (10 μg/kg; n=26) or placebo (n=26). Before and after this 2-week treatment, collateral-flow index (CFI) was determined by simultaneous measurement of mean aortic, distal coronary occlusive and central venous pressure. CD34+ endothelial progenitor cells (EPC) and monocytes were quantified before, during and after treatment; gene-expression analysis of monocytes was performed with real-time polymerase chain reaction (RT-PCR). G-CSF lead to a significant increase of EPC and monocytes (4.8 and 2.6 fold, p < 0.05); for both cell types, the extent of increase correlated with CFI increase (r=0.23 and 0.14, p < 0.05). G-CSF also induced a change in gene expression of pro-and anti-arteriogenic genes in monocytes. Among nine assessed genes, three were found to be differentially regulated (IL8, JAK2, and PNPLa4; p < 0.05). CONCLUSIONS The mechanism of induction of collateral growth by G-CSF is related to an increase of EPC and of peripheral monocytes. It also leads to a change toward a pro-arteriogenic gene expression in peripheral monocytes.
Resumo:
We aimed to estimate the global occurrence of zoonotic tuberculosis (TB) caused by Mycobacterium bovis or M. caprae infections in humans by performing a multilingual, systematic review and analysis of relevant scientific literature of the last 2 decades. Although information from many parts of the world was not available, data from 61 countries suggested a low global disease incidence. In regions outside Africa included in this study, overall median proportions of zoonotic TB of ≤1.4% in connection with overall TB incidence rates ≤71/100,000 population/year suggested low incidence rates. For countries of Africa included in the study, we multiplied the observed median proportion of zoonotic TB cases of 2.8% with the continental average overall TB incidence rate of 264/100,000 population/year, which resulted in a crude estimate of 7 zoonotic TB cases/100,000 population/year. These generally low incidence rates notwithstanding, available data indicated substantial consequences of this disease for some population groups and settings.
Resumo:
Spiders have one pair of venom glands, and only a few families have reduced them completely (Uloboridae, Holarchaeidae) or modified them to another function (Symphytognathidae or Scytodidae, see Suter and Stratton 2013). All other 42,000 known spider species (99%) utilize their venom to inject it into prey items, which subsequently become paralysed or are killed. Spider venom is a complex mixture of hundreds of components, many of them interacting with cell membranes or receptors located mainly in the nervous or muscular system (Herzig and King 2013). Spider venom, as it is today, has a 300-million-yearlong history of evolution and adaptation and can be considered as an optimized tool to subdue prey. In Mesothelae, the oldest spider group with less than 100 species, the venom glands lie in the anterior part of the cheliceral basal segment. They are very small and do not support the predation process very effectively. In Mygalomorphae, the venom glands are well developed and fill the basal cheliceral segment more or less completely. Many of these 3,000 species are medium- to large-/very large-sized spiders, and they have created the image of being dangerous beasts, attacking and killing a variety of animals, including humans. Although this picture is completely wrong, it is persistent and contributes considerably to human arachnophobia. The third group of spiders, Araneomorphae or “modern spiders”, comprises 93% of all spider species. The venom glands are enlarged and extend to the prosoma; the openings of the venom ducts are moved from the convex to the concave side of the cheliceral fangs and enlarged as well. These changes save the chelicerae from the necessity of being large, and hence, on the average, araneomorph spiders are much smaller than mygalomorphs. Nevertheless, they possess relatively large venom glands, situated mainly in the prosoma, and may also have rather potent venom.
Resumo:
BACKGROUND Preservation of myocardial perfusion during general anesthesia is likely important in patients at risk for perioperative cardiac complications. Data related to the influence of general anesthesia on the normal myocardial circulation are limited. In this study, we investigated myocardial microcirculatory responses to pharmacological vasodilation and sympathetic stimulation during general anesthesia with sevoflurane in healthy humans immediately before surgical stimulation. METHODS Six female and 7 male subjects (mean age 43 years, range 28-61) were studied at baseline while awake and during the administration of 1 minimum alveolar concentration sevoflurane. Using myocardial contrast echocardiography, myocardial blood flow (MBF) and microcirculatory variables were assessed at rest, during adenosine-induced hyperemia, and after cold pressor test-induced sympathetic stimulation. MBF was calculated from the relative myocardial blood volume multiplied by its exchange frequency (β) divided by myocardial tissue density (ρT), which was set at 1.05 g·mL(-1). RESULTS During sevoflurane anesthesia, MBF at rest was similar to baseline values (1.05 ± 0.28 vs 1.05 ± 0.32 mL·min(-1)·g(-1); P = 0.98; 95% confidence interval [CI], -0.18 to 0.18). Myocardial blood volume decreased (P = 0.0044; 95% CI, 0.01-0.04) while its exchange frequency (β) increased under sevoflurane anesthesia when compared with baseline. In contrast, hyperemic MBF was reduced during anesthesia compared with baseline (2.25 ± 0.5 vs 3.53 ± 0.7 mL·min(-1)·g(-1); P = 0.0003; 95% CI, 0.72-1.84). Sympathetic stimulation during sevoflurane anesthesia resulted in a similar MBF compared to baseline (1.53 ± 0.53 and 1.55 ± 0.49 mL·min(-1)·g(-1); P = 0.74; 95% CI, -0.47 to 0.35). CONCLUSIONS In otherwise healthy subjects who are not subjected to surgical stimulation, MBF at rest and after sympathetic stimulation is preserved during sevoflurane anesthesia despite a decrease in myocardial blood volume. However, sevoflurane anesthesia reduces hyperemic MBF, and thus MBF reserve, in these subjects.