311 resultados para fluorescein angiography
Resumo:
OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.
Resumo:
OBJECTIVE: The objective of our study was to establish a standardized procedure for postmortem whole-body CT-based angiography with lipophilic and hydrophilic contrast media solutions and to compare the results of these two methods. MATERIALS AND METHODS: Minimally invasive postmortem CT angiography was performed on 10 human cadavers via access to the femoral blood vessels. Separate perfusion of the arterial and venous systems was established with a modified heart-lung machine using a mixture of an oily contrast medium and paraffin (five cases) and a mixture of a water-soluble contrast medium with polyethylene glycol (PEG) 200 in the other five cases. Imaging was executed with an MDCT scanner. RESULTS: The minimally invasive femoral approach to the vascular system provided a good depiction of lesions of the complete vascular system down to the level of the small supplying vessels. Because of the enhancement of well-vascularized tissues, angiography with the PEG-mixed contrast medium allowed the detection of tissue lesions and the depiction of vascular abnormalities such as pulmonary embolisms or ruptures of the vessel wall. CONCLUSION: The angiographic method with a water-soluble contrast medium and PEG as a contrast-agent dissolver showed a clearly superior quality due to the lack of extravasation through the gastrointestinal vascular bed and the enhancement of soft tissues (cerebral cortex, myocardium, and parenchymal abdominal organs). The diagnostic possibilities of these findings in cases of antemortem ischemia of these tissues are not yet fully understood.
Resumo:
OBJECTIVE: The purpose of this study was to adapt and improve a minimally invasive two-step postmortem angiographic technique for use on human cadavers. Detailed mapping of the entire vascular system is almost impossible with conventional autopsy tools. The technique described should be valuable in the diagnosis of vascular abnormalities. MATERIALS AND METHODS: Postmortem perfusion with an oily liquid is established with a circulation machine. An oily contrast agent is introduced as a bolus injection, and radiographic imaging is performed. In this pilot study, the upper or lower extremities of four human cadavers were perfused. In two cases, the vascular system of a lower extremity was visualized with anterograde perfusion of the arteries. In the other two cases, in which the suspected cause of death was drug intoxication, the veins of an upper extremity were visualized with retrograde perfusion of the venous system. RESULTS: In each case, the vascular system was visualized up to the level of the small supplying and draining vessels. In three of the four cases, vascular abnormalities were found. In one instance, a venous injection mark engendered by the self-administration of drugs was rendered visible by exudation of the contrast agent. In the other two cases, occlusion of the arteries and veins was apparent. CONCLUSION: The method described is readily applicable to human cadavers. After establishment of postmortem perfusion with paraffin oil and injection of the oily contrast agent, the vascular system can be investigated in detail and vascular abnormalities rendered visible.
Resumo:
OBJECTIVE: We explored the potential for patients with proven venous thromboembolism or pulmonary embolism (PE) to have occult malignancies detected during the same CT examination. To verify this, we compared the presence of occult malignancies identified on pulmonary artery CT angiography (CTA) and CT venography (CTV) when venous thromboembolism (VTE) was present. SUBJECTS AND METHODS: Pulmonary artery CTA combined with CTV was performed on a 16-MDCT scanner on 186 adult patients suspected of having pulmonary embolism without any known malignancies. CTV was performed from the diaphragm to the knee 180 seconds after CTA. Two radiologists evaluated the presence of VTE, that is PE or deep venous thrombosis (DVT), and tumor lesions on both examinations in consensus. The malignant nature of the possibly identified tumors was confirmed by pathologic examination. RESULTS: VTE was found in 49 patients (26%). Malignant tumors were detected in 24 patients (13%). Eleven patients with malignant tumors had VTE (46% of patients with malignant tumors; 22% with VTE and 6% of all patients). There was correlation with presence of malignancies between both and DVT and DVT associated with PE but not between presence of malignancies and PE only. Patients with DVT and those with DVT associated with PE had a risk ratio of 3.2 and 3.3, respectively, for having a malignant tumor discovered simultaneously. CONCLUSION: A high number of malignant tumors can be incidentally discovered on pulmonary artery CTA, even more so with additional CTV. Radiologists should scrutinize scans to pick up unknown malignancies, especially in patients with identified VTE.
Resumo:
PURPOSE: To quantify the interobserver variability of abdominal aortic aneurysm (AAA) neck length and angulation measurements. MATERIALS AND METHODS: A total of 25 consecutive patients scheduled for endovascular AAA repair underwent follow-up 64-row computed tomographic (CT) angiography in 0.625-mm collimation. AAA neck length and angulation were determined by four blinded, independent readers. AAA neck length was defined as the longitudinal distance between the first transverse CT slice directly distal to the lowermost renal artery and the first transverse CT slice that showed at least a 15% larger outer aortic wall diameter versus the diameter measured directly below the lowermost renal artery. Infrarenal AAA neck angulation was defined as the true angle between the longitudinal axis of the proximal AAA neck and the longitudinal axis of the AAA lumen as analyzed on three-dimensional CT reconstructions. RESULTS: Mean deviation in aortic neck length determination was 32.3% and that in aortic neck angulation was 32.1%. Interobserver variability of aortic neck length and angulation measurements was considerable: in any reader combination, at least one measurement difference was outside the predefined limits of agreement. CONCLUSIONS: Assessment of the longitudinal extension and angulation of the infrarenal aortic neck is associated with substantial observer variability, even if measurement is carried out according to a standardized protocol. Further studies are mandatory to assess dedicated technical approaches to minimize variance in the determination of the longitudinal extension and angulation of the infrarenal aortic neck.
Resumo:
PURPOSE: This retrospective study was conducted to determine whether a low-volume contrast medium protocol provides sufficient enhancement for 64-detector computed tomography angiography (CTA) in patients with aortoiliac aneurysms. METHODS: Evaluated were 45 consecutive patients (6 women; mean age, 72 +/- 6 years) who were referred for aortoiliac computed tomography angiography between October 2005 and January 2007. Group A (22 patients; creatinine clearance, 64.2 +/- 8.1 mL/min) received 50 mL of the contrast agent. Group B (23 patients; creatinine clearance, 89.4 +/- 7.3 mL/min) received 100 mL of the contrast agent. The injection rate was 3.5 mL/s, followed by 30 mL of saline at 3.5 mL/s. Studies were performed on the same 64-detector computed tomography scanner using a real-time bolus-tracking technique. Quantitative analysis was performed by determination of mean vascular attenuation at 10 regions of interest from the suprarenal aorta to the common femoral artery by one reader blinded to type and amount of contrast agent and compared using the Student t test. Image quality according to a 4-point scale was assessed in consensus by two readers blinded to type and amount of contrast medium and compared using the Mann-Whitney test. Multivariable adjustments were performed using ordinal regression analysis. RESULTS: Mean total attenuation did not differ significantly between both groups (196.5 +/- 33.0 Hounsfield unit [HU] in group A and 203.1 +/- 44.2 HU in group B; P = .57 by univariate and P > .05 by multivariable analysis). Accordingly, attenuation at each region of interest was not significantly different (P > .35). Image quality was excellent or good in all patients. No significant differences in visual assessment were found comparing both contrast medium protocols (P > .05 by univariate and by multivariable analysis). CONCLUSIONS: Aortoiliac aneurysm imaging can be performed with substantially reduced amounts of contrast medium using 64-detector computed tomography angiography technology.
Resumo:
PURPOSE: To prospectively determine the accuracy of 64-section computed tomographic (CT) angiography for the depiction of coronary artery disease (CAD) that induces perfusion defects at myocardial perfusion imaging with single photon emission computed tomography (SPECT), by using myocardial perfusion imaging as the reference standard. MATERIALS AND METHODS: All patients gave written informed consent after the study details, including radiation exposure, were explained. The study protocol was approved by the local institutional review board. In patients referred for elective conventional coronary angiography, an additional 64-section CT angiography study and a myocardial perfusion imaging study (1-day adenosine stress-rest protocol) with technetium 99m-tetrofosmin SPECT were performed before conventional angiography. Coronary artery diameter narrowing of 50% or greater at CT angiography was defined as stenosis and was compared with the myocardial perfusion imaging findings. Quantitative coronary angiography served as a reference standard for CT angiography. RESULTS: A total of 1093 coronary segments in 310 coronary arteries in 78 patients (mean age, 65 years +/- 9 [standard deviation]; 35 women) were analyzed. CT angiography revealed stenoses in 137 segments (13%) corresponding to 91 arteries (29%) in 46 patients (59%). SPECT revealed 14 reversible, 13 fixed, and six partially reversible defects in 31 patients (40%). Sensitivity, specificity, and negative and positive predictive values, respectively, of CT angiography in the detection of reversible myocardial perfusion imaging defects were 95%, 53%, 94%, and 58% on a per-patient basis and 95%, 75%, 96%, and 72% on a per-artery basis. Agreement between CT and conventional angiography was very good (96% and kappa = 0.92 for patient-based analysis, 93% and kappa = 0.84 for vessel-based analysis). CONCLUSION: Sixty-four-section CT angiography can help rule out hemodynamically relevant CAD in patients with intermediate to high pretest likelihood, although an abnormal CT angiography study is a poor predictor of ischemia.
Resumo:
PURPOSE: To prospectively assess the depiction rate and morphologic features of myocardial bridging (MB) of coronary arteries with 64-section computed tomographic (CT) coronary angiography in comparison to conventional coronary angiography. MATERIALS AND METHODS: Patients were simultaneously enrolled in a prospective study comparing CT and conventional coronary angiography, for which ethics committee approval and informed consent were obtained. One hundred patients (38 women, 62 men; mean age, 63.8 years +/- 11.6 [standard deviation]) underwent 64-section CT and conventional coronary angiography. Fifty additional patients (19 women, 31 men; mean age, 59.2 years +/- 13.2) who underwent CT only were also included. CT images were analyzed for the direct signs length, depth, and degree of systolic compression, while conventional angiograms were analyzed for the indirect signs step down-step up phenomenon, milking effect, and systolic compression of the tunneled segment. Statistical analysis was performed with Pearson correlation analysis, the Wilcoxon two-sample test, and Fisher exact tests. RESULTS: MB was detected with CT in 26 (26%) of 100 patients and with conventional angiography in 12 patients (12%). Mean tunneled segment length and depth at CT (n = 150) were 24.3 mm +/- 10.0 and 2.6 mm +/- 0.8, respectively. Systolic compression in the 12 patients was 31.3% +/- 11.0 at CT and 28.2% +/- 10.5 at conventional angiography (r = 0.72, P < .001). With CT, a significant correlation was not found between systolic compression and length (r = 0.16, P = .25, n = 150) but was found with depth (r = 0.65, P < .01, n = 150) of the tunneled segment. In 14 patients in whom MB was found at CT but not at conventional angiography, length, depth, and systolic compression were significantly lower than in patients in whom both modalities depicted the anomaly (P < .001, P < .01, and P < .001, respectively). CONCLUSION: The depiction rate of MB is greater with 64-section CT coronary angiography than with conventional coronary angiography. The degree of systolic compression of MB significantly correlates with tunneled segment depth but not length.
Resumo:
AIM: To test whether quantitative stress echocardiography using contrast-based myocardial blood flow (MBF, ml x min(-1) x g(-1)) measurements can detect coronary artery disease in humans. METHODS: 48 patients eligible for pharmacological stress testing by myocardial contrast echocardiography (MCE) and willing to undergo subsequent coronary angiography were prospectively enrolled in the study. Baseline and adenosine-induced (140 microg x kg(-1) x min(-1)) hyperaemic MBF was analysed according to a three-coronary-artery-territory model. Vascular territories were categorised into three groups with increasing stenosis severity defined as percentage diameter reduction by quantitative coronary angiography. RESULTS: Myocardial blood flow reserve (MBFR)-that is, the ratio of hyperaemic to baseline MBF, was obtained in 128 (89%) territories. Mean (SD) baseline MBF was 1.073 (0.395) ml x min(-1) x g(-1) and did not differ between territories supplied by coronary arteries with mild (<50% stenosis), moderate (50%-74% stenosis) or severe (>or=75% stenosis) disease. Mean (SD) hyperaemic MBF and MBFR were 2.509 (1.078) ml x min(-1) x g(-1) and 2.54 (1.03), respectively, and decreased linearly (r2 = 0.21 and r2 = 0.39) with stenosis severity. ROC analysis revealed that a territorial MBFR <1.94 detected >or=50% stenosis with 89% sensitivity and 92% specificity. CONCLUSION: Quantitative stress testing based on MBF measurements derived from contrast echocardiography is a new method for the non-invasive and reliable assessment of coronary artery disease in humans.
Resumo:
Double fenestration of the anterior communicating artery (ACoA) complex associated with an aneurysm is a very rare finding and is usually caused by ACoA duplication and the presence of a median artery of the corpus callosum (MACC). We present a patient in whom double fenestration was not associated with ACoA duplication or even with MACC, representing therefore, a previously unreported anatomic variation. A 43 year old woman experienced sudden headache and the CT scans showed subarachnoid haemorrhage (SAH). On admission, her clinical condition was consistent with Hunt and Hess grade II. Conventional digital subtraction angiography (DSA) was performed and revealed multiple intracranial aneurysms arising from both middle cerebral arteries (MCA) and from the ACoA. Three-dimensional rotational angiography (3D-RA) disclosed a double fenestration of the ACoA complex which was missed by DSA. The patient underwent a classic pterional approach in order to achieve occlusion of both left MCA and ACoA aneurysms by surgical clipping. The post-operative period was uneventful. A rare anatomical variation characterised by a double fenestration not associated with ACoA duplication or MACC is described. The DSA images missed the double fenestration which was disclosed by 3D-RA, indicating the importance of 3D-RA in the diagnosis and surgical planning of intracranial aneurysms.
Resumo:
Postmortem minimal invasive angiography has already been implemented to support virtual autopsy examinations. An experimental approach in a porcine model to overcome an initially described artificial tissue edema artifact by using a poly ethylene glycol (PEG) containing contrast agent solution showed promising results. The present publication describes the first application of PEG in a whole corpse angiographic CT examination. A minimal invasive postmortem CT angiography was performed in a human corpse utilizing the high viscosity contrast agent solution containing 65% of PEG. Injection was carried out via the femoral artery into the aortic root in simulated cardiac output conditions. Subsequent CT scanning delivered the 3D volume data of the whole corpse. Visualization of the human arterial anatomy was excellent and the contrast agent distribution was generally limited to the arterial system as intended. As exceptions an enhancement of the brain, the left ventricular myocardium and the renal cortex became obvious. This most likely represented the stage of centralization of the blood circulation at the time of death with dilatation of the precapillary arterioles within these tissues. Especially for the brain this resulted in a distinctively improved visualization of the intracerebral structures by CT. However, the general tissue edema artifact of postmortem minimal invasive angiography examinations could be distinctively reduced.
Resumo:
OBJECTIVE: Measures to reduce radiation exposure and injected iodine mass are becoming more important with the widespread and often repetitive use of pulmonary CT angiography (CTA) in patients with suspected pulmonary embolism. In this retrospective study, we analyzed the capability of 2 low-kilovoltage CTA-protocols to achieve these goals. MATERIALS AND METHODS: Ninety patients weighing less than 100 kg were examined by a pulmonary CTA protocol using either 100 kVp (group A) or 80 kVp (group B). Volume and flow rate of contrast medium were reduced in group B (75 mL at 3 mL/s) compared with group A (100 mL at 4 mL/s). Attenuation was measured in the central and peripheral pulmonary arteries, and the contrast-to-noise ratios (CNR) were calculated. Entrance skin dose was estimated by measuring the surface dose in an ovoid-cylindrical polymethyl methacrylate chest phantom with 2 various dimensions corresponding to the range of chest diameters in our patients. Quantitative image parameters, estimated effective dose, and skin dose in both groups were compared by the t test. Arterial enhancement, noise, and overall quality were independently assessed by 3 radiologists, and results were compared between the groups using nonparametric tests. RESULTS: Mean attenuation in the pulmonary arteries in group B (427.6 +/- 116 HU) was significantly higher than in group A (342.1 +/- 87.7 HU; P < 0.001), whereas CNR showed no difference (group A, 20.6 +/- 7.3 and group B, 22.2 +/- 7.1; P = 0.302). Effective dose was lower by more than 40% with 80 kVp (1.68 +/- 0.23 mSv) compared with 100 kVp (2.87 +/- 0.88 mSv) (P < 0.001). Surface dose was significantly lower at 80 kVp compared with 100 kVp at both phantom dimensions (2.75 vs. 3.22 mGy; P = 0.027 and 2.22 vs. 2.73 mGy; P = 0.005, respectively). Image quality did not differ significantly between the groups (P = 0.151). CONCLUSIONS: Using 80 kVp in pulmonary CTA permits reduced patient exposure by 40% and CM volume by 25% compared with 100 kVp without deterioration of image quality in patients weighing less than 100 kg.
Resumo:
PURPOSE: To provide further information on verteporfin photodynamic therapy in occult with no classic choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD). METHODS: Verteporfin therapy was administered at baseline and then at months 3, 6, and 9, if fluorescein leakage from CNV was evident on angiography. RESULTS: Of 202 patients enrolled, 184 completed 12 months. Each patient was treated in one eye only. All study eyes received verteporfin therapy at baseline, with a progressive decrease in the number treated at subsequent visits (mean 2.5 treatments during 12 months). The mean change in visual acuity letter score from baseline to month 12 was -11.9. At month 12, 164 eyes (82.4%) had lost <30 letters of visual acuity, 123 eyes (61.8%) had lost <15 letters, 78 eyes (39.2%) had lost <5 letters, 31 (15.6%) had >5-letter increase, and 7 (3.5%) had >15-letter improvement. The percentage of eyes with fluorescein leakage from CNV decreased from 75.5% at month 3 to 25.1% at month 12. Adverse events were documented for 54% patients. Few patients had treatment-associated adverse events (7%). Acute severe visual acuity decrease occurred in two eyes (1%), one of which had visual acuity that returned to baseline by the next follow-up visit. CONCLUSIONS: This study provides additional evidence that over 12 months, verteporfin is generally well tolerated and maintains or improves visual acuity in over one-third of eyes containing occult-only CNV. Verteporfin also improved anatomical outcomes by reducing leakage from CNV in at least two-thirds of eyes.