102 resultados para flavone dimer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Being a caregiver for a spouse with Alzheimer's disease is associated with increased risk for cardiovascular illness, particularly for males. This study examined the effects of caregiver gender and severity of the spouse's dementia on sleep, coagulation, and inflammation in the caregiver. METHODS: Eighty-one male and female spousal caregivers and 41 non-caregivers participated (mean age of all participants 70.2 years). Full-night polysomnography (PSG) was recorded in each participants home. Severity of the Alzheimer's disease patient's dementia was determined by the Clinical Dementia Rating (CDR) scale. The Role Overload scale was completed as an assessment of caregiving stress. Blood was drawn to assess circulating levels of D-dimer and Interleukin-6 (IL-6). RESULTS: Male caregivers who were caring for a spouse with moderate to severe dementia spent significantly more time awake after sleep onset than female caregivers caring for spouses with moderate to severe dementia (p=.011), who spent a similar amount of time awake after sleep onset to caregivers of low dementia spouses and to non-caregivers. Similarly, male caregivers caring for spouses with worse dementia had significantly higher circulating levels of D-dimer (p=.034) than females caring for spouses with worse dementia. In multiple regression analysis (adjusted R(2)=.270, p<.001), elevated D-dimer levels were predicted by a combination of the CDR rating of the patient (p=.047) as well as greater time awake after sleep onset (p=.046). DISCUSSION: The findings suggest that males caring for spouses with more severe dementia experience more disturbed sleep and have greater coagulation, the latter being associated with the disturbed sleep. These findings may provide insight into why male caregivers of spouses with Alzheimer's disease are at increased risk for illness, particularly cardiovascular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To assess whether stress further increases hypercoagulation in older individuals. We investigated whether acute stress-induced changes in coagulation parameters differ with age. It is known that hypercoagulation occurs in response to acute stress and that a shift in hemostasis toward a hypercoagulability state occurs with age. However, it is not yet known whether acute stress further increases hypercoagulation in older individuals, and thus may increase their risk for cardiovascular disease (CVD). METHODS: A total of 63 medication-free nonsmoking men, aged between 20 and 65 years (mean +/- standard error of the mean = 36.7 +/- 1.7 years), underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We measured plasma clotting factor VII activity (FVII:C), fibrinogen, and D-dimer at rest, immediately, and 20 minutes after stress. RESULTS: Increased age predicted greater increases in fibrinogen (beta = 0.26, p = 0.041; DeltaR(2) = 0.05), FVII:C (beta = 0.40, p = .006; DeltaR(2) = 0.11), and D-dimer (beta = 0.51, p < .001; DeltaR(2) = 0.18) from rest to 20 minutes after stress independent of body mass index and mean arterial blood pressure. General linear models revealed significant effects of age and stress on fibrinogen, FVII:C, and D-dimer (main effects: p < .04), and greater D-dimer stress reactivity with older age (interaction age-by-stress: F(1.5/90.4) = 4.36, p = .024; f = 0.33). CONCLUSIONS: Our results suggest that acute stress might increase vulnerability in the elderly for hypercoagulability and subsequent hemostasis-associated diseases like CVD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute mental stress is a potent trigger of acute coronary syndromes. Catecholamine-induced hypercoagulability with acute stress contributes to thrombus growth after coronary plaque rupture. Melatonin may diminish catecholamine activity. We hypothesized that melatonin mitigates the acute procoagulant stress response and that this effect is accompanied by a decrease in the stress-induced catecholamine surge. Forty-five healthy young men received a single oral dose of either 3 mg melatonin (n = 24) or placebo medication (n = 21). One hour thereafter, they underwent a standardized short-term psychosocial stressor. Plasma levels of clotting factor VII activity (FVII:C), FVIII:C, fibrinogen, D-dimer, and catecholamines were measured at rest, immediately after stress, and 20 min and 60 min post-stress. The integrated change in D-dimer levels from rest to 60 min post-stress differed between medication groups controlling for demographic and metabolic factors (P = 0.047, eta(p)(2) = 0.195). Compared with the melatonin group, the placebo group showed a greater increase in absolute D-dimer levels from rest to immediately post-stress (P = 0.13; eta(p)(2) = 0.060) and significant recovery of D-dimer levels from immediately post-stress to 60 min thereafter (P = 0.007; eta(p)(2) = 0.174). Stress-induced changes in FVII:C, FVIII:C, fibrinogen, and catecholamines did not significantly differ between groups. Oral melatonin attenuated the stress-induced elevation in the sensitive coagulation activation marker D-dimer without affecting catecholamine activity. The finding provides preliminary support for a protective effect of melatonin in reducing the atherothrombotic risk with acute mental stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melatonin has previously been suggested to affect hemostatic function but studies on the issue are scant. We hypothesized that, in humans, oral administration of melatonin is associated with decreased plasma levels of procoagulant hemostatic measures compared with placebo medication and that plasma melatonin concentration shows an inverse association with procoagulant measures. Forty-six healthy men (mean age 25 +/- 4 yr) were randomized, single-blinded, to either 3 mg of oral melatonin (n = 25) or placebo medication (n = 21). One hour thereafter, levels of melatonin, fibrinogen, and D-dimer as well as activities of coagulation factor VII (FVII:C) and VIII (FVIII:C) were measured in plasma. Multivariate analysis of covariance and regression analysis controlled for age, body mass index, mean arterial blood pressure, heart rate, and norepinephrine plasma level. Subjects on melatonin had significantly lower mean levels of FVIII:C (81%, 95% CI 71-92 versus 103%, 95% CI 90-119; P = 0.018) and of fibrinogen (1.92 g/L, 95% CI 1.76-2.08 versus 2.26 g/L, 95% CI 2.09-2.43; P = 0.007) than those on placebo explaining 14 and 17% of the respective variance. In all subjects, increased plasma melatonin concentration independently predicted lower levels of FVIII:C (P = 0.037) and fibrinogen (P = 0.022) explaining 9 and 11% of the respective variance. Melatonin medication and plasma concentration were not significantly associated with FVII:C and D-dimer levels. A single dose of oral melatonin was associated with lower plasma levels of procoagulant factors 60 min later. There might be a dose-response relationship between the plasma concentration of melatonin and coagulation activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intra-alveolar fibrin is formed following lung injury and inflammation and may contribute to the development of pulmonary fibrosis. Fibrin turnover is altered in patients with pulmonary fibrosis, resulting in intra-alveolar fibrin accumulation, mainly due to decreased fibrinolysis. Alveolar type II epithelial cells (AEC) repair the injured alveolar epithelium by migrating over the provisional fibrin matrix. We hypothesized that repairing alveolar epithelial cells modulate the underlying fibrin matrix by release of fibrinolytic activity, and that the degree of fibrinolysis modulates alveolar epithelial repair on fibrin. To test this hypothesis we studied alveolar epithelial wound repair in vitro using a modified epithelial wound repair model with human A549 alveolar epithelial cells cultured on a fibrin matrix. In presence of the inflammatory cytokine interleukin-1beta, wounds increase by 800% in 24 hours mainly due to detachment of the cells, whereas in serum-free medium wound areas decreases by 22.4 +/- 5.2% (p < 0.01). Increased levels of D-dimer, FDP and uPA in the cell supernatant of IL-1beta-stimulated A549 epithelial cells indicate activation of fibrinolysis by activation of the plasmin system. In presence of low concentrations of fibrinolysis inhibitors, including specific blocking anti-uPA antibodies, alveolar epithelial repair in vitro was improved, whereas in presence of high concentrations of fibrinolysis inhibitors, a decrease was observed mainly due to decreased spreading and migration of cells. These findings suggest the existence of a fibrinolytic optimum at which alveolar epithelial repair in vitro is most efficient. In conclusion, uPA released by AEC alters alveolar epithelial repair in vitro by modulating the underlying fibrin matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blood coagulation activation might be one mechanism linking acute mental stress with coronary events. We investigated the natural habituation of coagulation responses and recovery to short-term mental stress. Three times with one-week intervals, 24 men (mean age 47 +/- 7 years) underwent the same 13-min stressor (preparation, job interview, mental arithmetic). During each visit venous blood was obtained four times (baseline, immediately post-stress, 45 min of recovery, 105 min of recovery). Eight blood coagulation parameters were measured at weeks one and three. Acute stress provoked increases in von Willebrand factor antigen, fibrinogen, clotting factor FVII activity (FVII:C), FVIII:C, FXII:C (p's < or = 0.019), and D-dimer (N.S.). All coagulation parameters experienced full recovery except FVIII:C (p = 0.022). Stress did not significantly affect activated partial thromboplastin time and prothrombin time. At all time points FVIII:C and FXII:C levels were significantly higher at week one compared to week three (p's < or = 0.041). Before catheter insertion, systolic blood pressure (p = 0.001) and heart rate (p = 0.026) were relatively higher at week one. Unlike the magnitude of systolic blood pressure response to stress (p = 0.007) and of cortisol recovery from stress (p = 0.002), the magnitude of all coagulation responses to stress and the recovery from stress were similar in week one and week three. Sympathetic activation with anticipatory stress best explained increased baseline activity in FVIII and FXII at week one. An incapacity of the coagulation system to adapt to stress repeats is perhaps a consequence of evolution, but might also contribute to increased coronary risk in some individuals, particularly in those with cardiovascular diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: This study analyzes the effects on coagulation and fibrinolysis comparing off-pump coronary artery bypass (OPCAB) and on-pump CABG operations. METHODS: In a prospective, nonrandomized, comparative evaluation, patients scheduled for elective myocardial revascularization were studied. Due to possible confounding factors patients with postoperative retransfusion of mediastinal shed blood were excluded. Nine patients underwent OPCAB operation and 16 underwent on-pump CABG. Activated clotting time (ACT) was adjusted to 250 seconds in OPCAB (81 +/- 18 [mean +/- SD] IU/kg heparin) and to more than 480 seconds in on-pump CABG (400 IU/kg heparin, additional 10,000 IU in pump prime). Perioperatively blood samples were collected and hematologic and hemostatic variables including fibrinopeptide A (FPA), fibrin monomer (FM), thrombin-antithrombin complex (TAT), and D-dimer were analyzed. RESULTS: Both groups showed comparable demographic variables. Number of grafts per patient was slightly higher in the on-pump group (3.6 +/- 0.6 versus 3.0 +/- 1.1, p = 0.23). The FPA levels did not differ significantly between the groups. The FM, TAT, and D-dimer values were significantly higher in on-pump CABG (p < 0.0001, p < 0.01, and p < 0.0001, respectively), reflecting increased coagulant and fibrinolytic activity. This was also the case when values were corrected for hemodilution. CONCLUSIONS: Despite lower systemic anticoagulation activation of coagulation and fibrinolysis is reduced in OPCAB compared with on-pump CABG. Reduced thrombin generation and reduced fibrinolytic activity in OPCAB indicates better preservation of hemostasis. We suggest the term "preserved hemostasis" instead of "hypercoagulant activity" with respect to OPCAB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the relationship between social support and coagulation parameter reactivity to mental stress in men and to determine if norepinephrine is involved. Lower social support is associated with higher basal coagulation activity and greater norepinephrine stress reactivity, which in turn, is linked with hypercoagulability. However, it is not known if low social support interacts with stress to further increase coagulation reactivity or if norepinephrine affects this association. These findings may be important for determining if low social support influences thrombosis and possible acute coronary events in response to acute stress. We investigated the relationship between social support and coagulation parameter reactivity to mental stress in men and determined if norepinephrine is involved. METHODS: We measured perceived social support in 63 medication-free nonsmoking men (age (mean +/- standard error of the mean) = 36.7 +/- 1.7 years) who underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We measured plasma D-dimer, fibrinogen, clotting Factor VII activity (FVII:C), and plasma norepinephrine at rest as well as immediately after stress and 20 minutes after stress. RESULTS: Independent of body mass index, mean arterial pressure, and age, lower social support was associated with higher D-dimer and fibrinogen levels at baseline (p < .012) and with greater increases in fibrinogen (beta = -0.36, p = .001; DeltaR(2) = .12), and D-dimer (beta = -0.21, p = .017; DeltaR(2) = .04), but not in FVII:C (p = .83) from baseline to 20 minutes after stress. General linear models revealed significant main effects of social support and stress on fibrinogen, D-dimer, and norepinephrine (p < .035). Controlling for norepinephrine did not change the significance of the reported associations between social support and the coagulation measures D-dimer and fibrinogen. CONCLUSIONS: Our results suggest that lower social support is associated with greater coagulation activity before and after acute stress, which was unrelated to norepinephrine reactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Stress-related hypercoagulability might link job stress with atherosclerosis. PURPOSE: This paper aims to study whether overcommitment, effort-reward imbalance, and the overcommitment by effort-reward imbalance interaction relate to an exaggerated procoagulant stress response. METHODS: We assessed job stress in 52 healthy teachers (49 +/- 8 years, 63% women) at study entry and, after a mean follow-up of 21 +/- 4 months, when they underwent an acute psychosocial stressor and had coagulation measures determined in plasma. In order to increase the reliability of job stress measures, entry and follow-up scores of overcommitment and of effort-reward imbalance were added up to total scores. RESULTS: During recovery from stress, elevated overcommitment correlated with D-dimer increase and with smaller fibrinogen decrease. In contrast, overcommitment was not associated with coagulation changes from pre-stress to immediately post-stress. Effort-reward imbalance and the interaction between overcommitment and effort-reward imbalance did not correlate with stress-induced changes in coagulation measures. CONCLUSIONS: Overcommitment predicted acute stress-induced hypercoagulability, particularly during the recovery period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Acute psychosocial stress accelerates blood coagulation and elicits hemoconcentration which mechanisms are implicated in acute coronary thrombotic events. We investigated the extent to which the change in prothrombotic measures with acute stress reflects hemoconcentration and genuine activation of coagulation. MATERIAL AND METHODS: Twenty-one middle-aged healthy men underwent three sessions of a combined speech and mental arithmetic task with one-week intervals. Coagulation and plasma volume were assessed at baseline, immediately post-stress, and 45 min post-stress at sessions one and three. Measures of both visits were aggregated to enhance robustness of individual biological stress responses. Changes in eight coagulation measures with and without adjustment for simultaneous plasma volume shift were compared. RESULTS: From baseline to immediately post-stress, unadjusted levels of fibrinogen (p=0.028), clotting factor VII activity (FVII:C) (p=0.001), FVIII:C (p<0.001), FXII:C (p<0.001), and von Willebrand factor (VWF) (p=0.008) all increased. Taking into account hemoconcentration, fibrinogen (p=0.020) and FVII:C levels (p=0.001) decreased, activated partial prothrombin time (APPT) shortened (p<0.001) and prothrombin time (PT) was prolonged (p<0.001). Between baseline and 45 min post-stress, unadjusted (p=0.050) and adjusted (p=0.001) FVIII:C levels increased, adjusted APTT was prolonged (p=0.017), and adjusted PT was shortened (p=0.033). D-dimer levels did not significantly change over time. CONCLUSIONS: Adjustment for stress-hemoconcentration altered the course of unadjusted levels of several prothrombotic factors. After adjustment for hemoconcentration, APPT was shortened immediately post-stress, whereas 45 min post-stress, FVIII:C was increased and PT was shortened. Procoagulant changes to acute stress may reflect both hemoconcentration and genuine activation of coagulation molecules and pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants have a remarkable potential for sustained (indeterminate) postembryonic growth. Following their specification in the early embryo, tissue-specific precursor cells first establish tissues and later maintain them postembryonically. The mechanisms underlying these processes are largely unknown. Here we define local control of oriented, periclinal cell division as the mechanism underlying both the establishment and maintenance of vascular tissue. We identify an auxin-regulated basic helix-loop-helix (bHLH) transcription factor dimer as a critical regulator of vascular development. Due to a loss of periclinal divisions, vascular tissue gradually disappears in bHLH-deficient mutants; conversely, ectopic expression is sufficient for triggering periclinal divisions. We show that this dimer operates independently of tissue identity but is restricted to a small vascular domain by integrating overlapping transcription patterns of the interacting bHLH proteins. Our work reveals a common mechanism for tissue establishment and indeterminate vascular development and provides a conceptual framework for developmental control of local cell divisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DNA-enabled dimerization of pentamethine cyanine (Cy5) dyes was studied by optical methods. The value of cyanine as a chiroptical reporter using a monomer-to-dimer switch is demonstrated. The specific shape of the CD signal and its high intensity are a result of J-type assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91-115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111-118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major blood stage antimalarial drugs like chloroquine and artemisinin target the heme detoxification process of the malaria parasite. Hemozoin formation reactions in vitro using the Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2), lipids, and auto-catalysis are slow and could not explain the speed of detoxification needed for parasite survival. Here, we show that malarial hemozoin formation is a coordinated two component process involving both lipids and histidine-rich proteins. Hemozoin formation efficiency in vitro is 1-2% with Pfhrp-2 and 0.25-0.5% with lipids. We added lipids after 9h in a 12h Pfhrp-2 mediated reaction that resulted in sixfold increase in hemozoin formation. However, a lipid mediated reaction in which Pfhrp-2 was added after 9h produced only twofold increase in hemozoin production compared to the reaction with Pfhrp-2 alone. Synthetic peptides corresponding to the Pfhrp-2 heme binding sequences, based on repeats of AHHAAD, neither alone nor in combination with lipids were able to generate hemozoin in vitro. These results indicate that hemozoin formation in malaria parasite involves both the lipids and the scaffolding proteins. Histidine-rich proteins might facilitate hemozoin formation by binding with a large number of heme molecules, and facilitating the dimer formation involving iron-carboxylate bond between two heme molecules, and lipids may then subsequently assist the mechanism of long chain formation, held together by hydrogen bonds or through extensive networking of hydrogen bonds.