125 resultados para fine particles, Positive Matrix Factorisation, receptor modelling
Resumo:
A critical role for Tie1, an orphan endothelial receptor, in blood vessel morphogenesis has emerged from mutant mouse studies. Moreover, it was recently demonstrated that certain angiopoietin (Ang) family members can activate Tie1. We report here that Ang1 induces Tie1 phosphorylation in endothelial cells. Tie1 phosphorylation was, however, Tie2 dependent because 1) Ang1 failed to induce Tie1 phosphorylation when Tie2 was down-regulated in endothelial cells; 2) Tie1 phosphorylation was induced in the absence of Ang1 by either a constitutively active form of Tie2 or a Tie2 agonistic antibody; 3) in HEK 293 cells Ang1 phosphorylated a form of Tie1 without kinase activity when coexpressed with Tie2, and Ang1 failed to phosphorylate Tie1 when coexpressed with kinase-defective Tie2. Ang1-mediated AKT and 42/44MAPK phosphorylation is predominantly Tie2 mediated, and Tie1 down-regulates this pathway. Finally, based on a battery of in vitro and in vivo data, we show that a main role for Tie1 is to modulate blood vessel morphogenesis by virtue of its ability to down-regulate Tie2-driven signaling and endothelial survival. Our new observations help to explain why Tie1 null embryos have increased capillary densities in several organ systems. The experiments also constitute a paradigm for how endothelial integrity is fine-tuned by the interplay between closely related receptors by a single growth factor.
Resumo:
PURPOSE: Although metabolic changes make diagnosis of insulinoma relatively easy, surgical removal is hampered by difficulties in locating it, and there is no efficient treatment for malignant insulinoma. We have previously shown that the high density of glucagon-like peptide-1 receptors (GLP-1R) in human insulinoma cells provides an attractive target for molecular imaging and internal radiotherapy. In this study, we investigated the therapeutic potential of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4, an (111)In-labeled agonist of GLP-1, in a transgenic mouse model of human insulinoma. EXPERIMENTAL DESIGN: [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4 was assessed in the Rip1Tag2 mouse model of pancreatic beta-cell carcinogenesis, which exhibits a GLP-1R expression comparable with human insulinoma. Mice were injected with 1.1, 5.6, or 28 MBq of the radiopeptide and sacrificed 7 days after injection. Tumor uptake and response, the mechanism of action of the radiopeptide, and therapy toxicity were investigated. RESULTS: Tumor uptake was >200% injected activity per gram, with a dose deposition of 3 Gy/MBq at 40 pmol [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4. Other GLP-1R-positive organs showed > or =30 times lower dose deposition. A single injection of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4 resulted in a reduction of the tumor volume by up to 94% in a dose-dependent manner without significant acute organ toxicity. The therapeutic effect was due to increased tumor cell apoptosis and necrosis and decreased proliferation. CONCLUSIONS: The results suggest that [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4 is a promising radiopeptide capable of selectively targeting insulinoma. Furthermore, Auger-emitting radiopharmaceuticals such as (111)In are able to produce a marked therapeutic effect if a high tumor uptake is achieved.
Resumo:
Chemokines are small, secreted proteins that orchestrate the migration of cells, which are involved in immune defence, immune surveillance and haematopoiesis. However, chemokines are also implicated in the pathology of various inflammatory diseases, cancers and HIV. The chemokine system is considerably large and has a redundancy in the repertoire of its inflammatory mediators. Therefore, strict regulation of chemokine activity is crucial. Chemokines are the substrate for various proteases including the serine protease CD26/dipeptidyl-peptidase IV and matrix metalloproteinases. Regulation by proteolytic cleavage controls and fine-tunes chemokine function by either enhancing or reducing its chemotactic activity or receptor selectivity. Often chemokines and the proteases that regulate them are produced in the same microenvironment and expression of both may be simultaneously induced by a common stimulus enabling the rapid regulation of chemokine activity. The overall impact of cleaved chemokines in cellular responses is very complex. In this review, we will give an overview on chemokine modification and the respective chemokine modifying proteases. Furthermore, we will summarize the emerging literature describing the consequences in inflammation, haematopoiesis, cancer and HIV infection upon proteolytic chemokine processing.
Resumo:
Interactions between follicular epithelial cells and extracellular matrix (ECM) are supposed to play an important role in the development and maintenance of thyroid tissue architecture. In the present study we have therefore investigated the synthesis of ECM components by a feline thyroid cell line which is able to form follicle-like structures in vitro, and also in v-ras-transfected and control-transfected sublines. Transfections were performed by lipofection with pZSR (viral Harvey ras gene; neo) and pSV2-neo (control, neo only) plasmids. We have adapted a semisolid culture system composed exclusively of polymerized alginate and therefore devoid of ECM components. Feline cells embedded in alginate gels as single cells and cultured for up to 90 days formed cell clusters within 10 days. Follicle-like structures were formed in the original cell lines and also in the v-ras- and control-transfected cells. Differences in proliferation rates were observed, the v-ras-transfected cells growing up to two to three times faster than the non-transfected cells. Immunostaining was done using rabbit first antibodies directed against mouse collagen IV, human fibronectin, laminin (tumor Engelbreth-Holm-Swarm laminin), perlecan and other ECM components. For comparison, immunostaining was also performed on cryosections of nodular goiters of six hyperthyroid cats. The cell lines and their transfected clones stained strongly positive for collagen IV and fibronectin, and positively but less strongly for laminin and perlecan. The cat goiter tissue stained positively for collagen IV, laminin, perlecan, and fibronectin, and positive staining for S-laminin (containing the beta2-chain) was seen in blood vessel walls in this tissue. In conclusion, cat cell lines grow three-dimensionally in alginate beads over several weeks, they form follicle-like structures and express the same ECM components as the native cat goiter tissue. Transfection with v-ras does increase proliferation rate, but does not fundamentally alter formation of follicle-like structures and ECM expression. Alginate gel culture is a promising new tool for the study of follicular morphogenesis, polarity, the expression pattern of ECM components and of the interaction between thyrocytes and ECM. It avoids interference caused by gels composed of ECM components.
Resumo:
In this study the hypothesis that triiodothyronine (T3) and growth hormone (GH) may have some direct or indirect effect on the regulation of GH-receptor/GH-binding protein (GHR/GHBP) gene transcription was tested. Different concentrations of T3 (0, 0.5, 2, 10 nmol/l) and GH (0, 10, 150 ng/ml) were added to human hepatoma (HuH7) cells cultured in serum-free hormonally-defined medium for 0, 1 and 2 h. Thereafter GHR/GHBP mRNA expression was quantitatively assessed by using PCR amplification. GH at a concentration of 10 ng/ml resulted in a significant increase of GHR/GHBP gene expression whereas a supraphysiological concentration of GH (150 ng/ml) caused a significant decrease of GHR/GHBP mRNA levels. The simultaneous addition of 0.5 nmol/l T3 to the variable concentrations of GH did not modify GHR/GHBP mRNA levels whereas the addition of 2 nmol/l up-regulated GHR/GHBP gene expression already after 1 h, an increase which was even more marked when 10 nmol/l of T3 was added. Interestingly, there was a positive correlation between the increase of GHR/GHBP mRNA levels and the T3 concentration used (r: 0.8). In addition, nuclear run-on experiments and GHBP determinations were performed which confirmed the changes in GHR/GHBP mRNA levels. Cycloheximide (10 microg/ml) did not alter transcription rate following GH addition but blocked GHR/GHBP gene transcription in T3 treated cells indicating that up-regulation of GHR/GHBP gene transcription caused by T3 requires new protein synthesis and is, therefore, dependent on indirect mechanisms. In conclusion, we present data showing that T3 on its own has a stimulatory effect on GHR/GHBP gene transcription which is indirect and additive to the GH-induced changes.
Resumo:
To compare the efficacy of chemoendocrine treatment with that of endocrine treatment (ET) alone for postmenopausal women with highly endocrine responsive breast cancer. In the International Breast Cancer Study Group (IBCSG) Trials VII and 12-93, postmenopausal women with node-positive, estrogen receptor (ER)-positive or ER-negative, operable breast cancer were randomized to receive either chemotherapy or endocrine therapy or combined chemoendocrine treatment. Results were analyzed overall in the cohort of 893 patients with endocrine-responsive disease, and according to prospectively defined categories of ER, age and nodal status. STEPP analyses assessed chemotherapy effect. The median follow-up was 13 years. Adding chemotherapy reduced the relative risk of a disease-free survival event by 19% (P = 0.02) compared with ET alone. STEPP analyses showed little effect of chemotherapy for tumors with high levels of ER expression (P = 0.07), or for the cohort with one positive node (P = 0.03). Chemotherapy significantly improves disease-free survival for postmenopausal women with endocrine-responsive breast cancer, but the magnitude of the effect is substantially attenuated if ER levels are high.
Resumo:
Alveoli are formed in the lung by the insertion of secondary tissue folds, termed septa, which are subsequently remodeled to form the mature alveolar wall. Secondary septation requires interplay between three cell types: endothelial cells forming capillaries, contractile interstitial myofibroblasts, and epithelial cells. Here, we report that postnatal lung alveolization critically requires ephrinB2, a ligand for Eph receptor tyrosine kinases expressed by the microvasculature. Mice homozygous for the hypomorphic knockin allele ephrinB2DeltaV/DeltaV, encoding mutant ephrinB2 with a disrupted C-terminal PDZ interaction motif, show severe postnatal lung defects including an almost complete absence of lung alveoli and abnormal and disorganized elastic matrix. Lung alveolar formation is not sensitive to loss of ephrinB2 cytoplasmic tyrosine phosphorylation sites. Postnatal day 1 mutant lungs show extracellular matrix alterations without differences in proportions of major distal cell populations. We conclude that lung alveolar formation relies on endothelial ephrinB2 function.
Resumo:
The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells. Matrix-bound Ang1 induced cell adhesion, motility and Tie2 activation in cell-matrix contacts that became translocated to the trailing edge in migrating endothelial cells. In contrast, in contacting cells Ang1 induced Tie2 translocation to cell-cell contacts and the formation of homotypic Tie2-Tie2 trans-associated complexes that included the vascular endothelial phosphotyrosine phosphatase, leading to inhibition of paracellular permeability. Distinct signalling proteins were preferentially activated by Tie2 in the cell-matrix and cell-cell contacts, where Ang2 inhibited Ang1-induced Tie2 activation. This novel type of cellular microenvironment-dependent receptor tyrosine kinase activation may explain some of the effects of angiopoietins in angiogenesis and vessel stabilization.
Resumo:
Alkylamides (alkamides) from Echinacea modulate tumor necrosis factor alpha mRNA expression in human monocytes/macrophages via the cannabinoid type 2 (CB2) receptor (Gertsch, J., Schoop, R., Kuenzle, U., and Suter, A. (2004) FEBS Lett. 577, 563-569). Here we show that the alkylamides dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide (A1) and dodeca-2E,4E-dienoic acid isobutylamide (A2) bind to the CB2 receptor more strongly than the endogenous cannabinoids. The Ki values of A1 and A2 (CB2 approximately 60 nM; CB1 >1500 nM) were determined by displacement of the synthetic high affinity cannabinoid ligand [3H]CP-55,940. Molecular modeling suggests that alkylamides bind in the solvent-accessible cavity in CB2, directed by H-bonding and pi-pi interactions. In a screen with 49 other pharmacologically relevant receptors, it could be shown that A1 and A2 specifically bind to CB2 and CB1. A1 and A2 elevated total intracellular Ca2+ in CB2-positive but not in CB2-negative promyelocytic HL60 cells, an effect that was inhibited by the CB2 antagonist SR144528. At 50 nM, A1, A2, and the endogenous cannabinoid anandamide (CB2 Ki >200 nM) up-regulated constitutive interleukin (IL)-6 expression in human whole blood in a seemingly CB2-dependent manner. A1, A2, anandamide, the CB2 antagonist SR144528 (Ki <10 nM), and also the non-CB2-binding alkylamide undeca-2E-ene,8,10-diynoic acid isobutylamide all significantly inhibited lipopolysaccharide-induced tumor necrosis factor alpha, IL-1beta, and IL-12p70 expression (5-500 nM) in a CB2-independent manner. Alkylamides and anandamide also showed weak differential effects on anti-CD3-versus anti-CD28-stimulated cytokine expression in human whole blood. Overall, alkylamides, anandamide, and SR144528 potently inhibited lipopolysaccharide-induced inflammation in human whole blood and exerted modulatory effects on cytokine expression, but these effects are not exclusively related to CB2 binding.
Resumo:
BACKGROUND: Lymph node staging of bladder or prostate cancer using conventional imaging is limited. Newer approaches such as ultrasmall superparamagnetic particles of iron oxide (USPIO) and diffusion-weighted magnetic resonance imaging (DW-MRI) have inconsistent diagnostic accuracy and are difficult to interpret. OBJECTIVE: To assess whether combined USPIO and DW-MRI (USPIO-DW-MRI) improves staging of normal-sized lymph nodes in bladder and/or prostate cancer patients. DESIGN, SETTING, AND PARTICIPANTS: Twenty-one consecutive patients with bladder and/or prostate cancer were enrolled between May and October 2008. One patient was excluded secondary to bone metastases detected on DW-MRI with subsequent abstention from surgery. INTERVENTION: Patients preoperatively underwent 3-T MRI before and after administration of lymphotropic USPIO using conventional MRI sequences combined with DW-MRI. Surgery consisted of extended pelvic lymphadenectomy and resection of primary tumors. MEASUREMENTS: Diagnostic accuracies of the new combined USPIO-DW-MRI approach compared with the "classic" reading method evaluating USPIO images without and with DW-MRI versus histopathology were evaluated. Duration of the two reading methods was noted for each patient. RESULTS AND LIMITATIONS: Diagnostic accuracy (90% per patient or per pelvic side) was comparable for the classic and the USPIO-DW-MRI reading method, while time of analysis with 80 min (range 45-180 min) for the classic and 13 min (range 5-90 min) for the USPIO-DW-MRI method was significantly shorter (p<0.0001). Interobserver agreement (three blinded readers) was high with a kappa value of 0.75 and 0.84, respectively. Histopathological analysis showed metastases in 26 of 802 analyzed lymph nodes (3.2%). Of these, 24 nodes (92%) were correctly diagnosed as positive on USPIO-DW-MRI. In two patients, one micrometastasis each (1.0x0.2 mm; 0.7x0.4 mm) was missed in all imaging studies. CONCLUSIONS: USPIO-DW-MRI is a fast and accurate method for detecting pelvic lymph node metastases, even in normal-sized nodes of bladder or prostate cancer patients.
Resumo:
ABSTRACT: BACKGROUND: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. RESULTS: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. CONCLUSION: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress.
Resumo:
The current therapeutic strategy in breast cancer is to identify a target, such as estrogen receptor (ER) status, for tailoring treatments. We investigated the patterns of recurrence with respect to ER status for patients treated in two randomized trials with 25 years' median follow-up. In the ER-negative subpopulations most breast cancer events occurred within the first 5-7 years after randomization, while in the ER-positive subpopulations breast cancer events were spread through 10 years. In the ER-positive subpopulation, 1 year endocrine treatment alone significantly prolonged disease-free survival (DFS) with no additional benefit observed by adding 1 year of chemotherapy. In the small ER-negative subpopulation chemo-endocrine therapy had a significantly better DFS than endocrine alone or no treatment. Despite small numbers of patients, "old-fashioned" treatments, and competing causes of treatment failure, the value of ER status as a target for response to adjuvant treatment is evident through prolonged follow-up.
Resumo:
Fgfrl1 is a novel member of the fibroblast growth factor receptor family. Its extracellular domain resembles the four conventional Fgfrs, while its intracellular domain lacks the tyrosine kinase domain necessary for Fgf mediated signal transduction. During embryonic development Fgfrl1 is expressed in the musculoskeletal system, in the lung, the pancreas and the metanephric kidney. Targeted disruption of the Fgfrl1 gene leads to the perinatal death of the mice due to a hypoplastic diaphragm, which is unable to inflate the lungs. Here we show that Fgfrl1-/- embryos also fail to develop the metanephric kidney. While the rest of the urogenital system, including bladder, ureter and sexual organs, develops normally, a dramatic reduction of ureteric branching morphogenesis and a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme result in severe renal dysgenesis. The failure of nephron induction might be explained by the absence of the tubulogenic markers Wnt4, Fgf8, Pax8 and Lim1 at E12.5 of the mutant animals. We also observed a loss of Pax2 positive nephron precursor cells and an increase of apoptosis in the cortical zone of the remnant kidney. Fgfrl1 is therefore essential for mesenchymal differentiation in the early steps of nephrogenesis.
Resumo:
In multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE), dysfunction of the blood-brain barrier (BBB) leads to edema formation within the central nervous system. The molecular mechanisms of edema formation in EAE/MS are poorly understood. We hypothesized that edema formation is due to imbalanced water transport across the BBB caused by a disturbed crosstalk between BBB endothelium and astrocytes. Here, we demonstrate at the light microscopic and ultrastructural level, the loss of polarized localization of the water channel protein aquaporin-4 (AQP4) in astrocytic endfeet surrounding microvessels during EAE. AQP4 was found to be redistributed over the entire astrocytic cell surface and lost its arrangement in orthogonal arrays of intramembranous particles as seen in the freeze-fracture replica. In addition, immunostaining for the astrocytic extracellular matrix receptor beta-dystroglycan disappeared from astroglial membranes in the vicinity of inflammatory cuffs, whereas immunostaining for the dystroglycan ligands agrin and laminin in the perivascular basement membrane remained unchanged. Our data suggest that during EAE, loss of beta-dystroglycan-mediated astrocyte foot process anchoring to the basement membrane leads to loss of polarized AQP4 localization in astrocytic endfeet, and thus to edema formation in EAE.