82 resultados para fetal hydrothorax
Resumo:
Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's disease (PD). The low availability and the poor survival and integration of transplanted cells in the host brain are major obstacles in this approach. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor with growth- and survival-promoting capabilities for developing DA neurons. In the present study, we examined whether pretreatment of ventral mesencephalic (VM) free-floating roller tube (FFRT) cultures with GDNF would improve graft survival and function. For that purpose organotypic cultures of E14 rat VM were grown for 2, 4 or 8 days in the absence (control) or presence of GDNF [10 ng/ml] and transplanted into the striatum of 6-hydroxydopamine-lesioned rats. While all groups of rats showed a significant reduction in d-amphetamine-induced rotations at 6 weeks posttransplantation a significantly improved graft function was observed only in the days in vitro (DIV) 4 GDNF pretreated group compared to the control group. In addition, no statistical significant differences between groups were found in the number of surviving tyrosine hydroxylase-immunoreactive (TH-ir) neurons assessed at 9 weeks posttransplantation. However, a tendency for higher TH-ir fiber outgrowth from the transplants in the GDNF pretreated groups as compared to corresponding controls was observed. Furthermore, GDNF pretreatment showed a tendency for a higher number of GIRK2 positive neurons in the grafts. In sum, our findings demonstrate that GDNF pretreatment was not disadvantageous for transplants of embryonic rat VM with the FFRT culture technique but only marginally improved graft survival and function.
Resumo:
Remarkable advances in ultrasound imaging technology have made it possible to diagnose fetal cardiovascular lesions as early as 12-14 weeks of gestation and to assess their physiological relevance by echocardiography. Moreover, invasive techniques have been developed and refined to relieve significant congenital heart disease (CHD), such as critical aortic and pulmonary stenoses in the pediatric population including neonates. Recognition of the fact that certain CHDs can evolve in utero, and early intervention may improve the outcome by altering the natural history of such conditions has led to the evolution of a new fetal therapy, i.e. fetal cardiac intervention. Two entities, pulmonary valvar atresia and intact ventricular septum (PA/IVS) and hypoplastic left heart syndrome (HLHS), are associated with significant morbidity and mortality even with postnatal surgical therapy. These cases are believed to occur due to restricted blood flow, leading to impaired growth and function of the right or left ventricle. Therefore, several centers started the approach of antenatal intervention with the primary goal of improving the blood flow through the stenotic/atretic valve orifices to allow growth of cardiac structures. Even though centers with a reasonable number of cases seem to have improved the technique and the immediate outcome of fetal interventions, the field is challenged by ethical issues as the intervention puts both the mother and the fetus at risk. Moreover, the perceived benefits of prenatal treatment have to be weighed against steadily improving postnatal surgical and hybrid procedures, which have been shown to reduce morbidity and mortality for these complex heart defects. This review is an attempt to provide a balanced opinion and an update on fetal cardiac intervention.
Resumo:
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.
Resumo:
Cytochrome P450c17 catalyzes both 17alpha-hydroxylation and 17,20-lyase conversion of 21-carbon steroids to 19-carbon precursors of sex steroids. P450c17 can mediate testosterone biosynthesis via the conversion of pregnenolone to dehydroepiandrosterone (the delta(5) pathway) or via conversion of progesterone to androstenedione (the delta(4) pathway). In many species, the 17, 20-lyase activity of P450c17 for one pathway dominates, reflecting the preferred steroidogenic pathway of that species. All studies of recombinant human P450c17 and of human adrenal microsomes have found high 17, 20-lyase activity only in the delta(5) pathway. Because the 17, 20-lyase activities in both the delta(4) and delta(5) pathways for testicular P450c17 have not been directly compared, however, it is not known if the delta(5) pathway dominates in the human testis. To resolve this issue, we assayed the conversion of 17alpha-hydroxypregnenolone to dehydroepiandrosterone (delta(5) 17, 20-lyase activity) and of 17alpha-hydroxyprogesterone to androstenedione (delta(4) 17, 20-lyase activity) by human fetal testicular microsomes. We obtained apparent Michaelis constant (K(m)) and maximum velocity (V(max)) values of 1.0 microM and 0.73 pmol.min(-1). microg(-1) for delta(5) 17, 20-lyase activity and of 3.5 microM and 0.23 pmol.min(-1). microg(-1) for delta(4) 17, 20-lyase activity. Catalytic efficiencies, expressed as the ratio V(max)/K(m), were 0.73 and 0.066 for the delta(5) and delta(4) reactions, respectively, indicating 11-fold higher preference for the delta(5) pathway. We conclude that the majority of testosterone biosynthesis in the human testis proceeds through the conversion of pregnenolone to dehydroepiandrosterone via the delta(5) pathway.
Resumo:
Tenascin-C (TNC) is a multidomain extracellular matrix protein that contributes to organogenesis and tumorgenesis. To elucidate its developmental function in the context of TNC deficiency, lung lobes of TNC null mice were obtained at Embryonic Days E11.5 and E12.5 and cultured for 3 d. In lung explants of homozygote TNC-deficient embryos (E12.5) the number of future airway branches was reduced by 36% as compared with wild-type. In heterozygote explants only half of the reduction (18%) was observed. No significant alteration, neither of the explant growth nor of the pattern of airway branching, was noticed in TNC-null explants. However, the terminal endbuds of the transgenic explants were enlarged. The results are supported by a morphologic investigation at Postnatal Day P2, where the airspaces of TNC-deficient lungs appeared larger than in wild-type lungs. Taken together, our results represent the first developmental phenotype of TNC-null mice. We conclude that TNC takes part in the control of fetal lung branching, and that not only the presence of TNC but also its amount is important. Because TNC is predominantly expressed at the growing tip of the future airways, we hypothesize that TNC promotes the penetration into the surrounding mesenchyme and the branching of the growing airways.
Resumo:
Spontaneous contractions of the fetal airways are a well recognized but poorly characterized phenomenon. In the present study spontaneous narrowing of the airways was analyzed in freshly isolated lungs from early to late gestation in fetal pigs and rabbits and in cultured fetal mouse lungs. Propagating waves of contraction traveling proximal to distal were observed in fresh lungs throughout gestation which displaced the lung liquid along the lumen. In the pseudoglandular and canalicular stages (fetal pigs) the frequency ranged from 2.3 to 3.3 contractions/min with a 39 to 46% maximum reduction of lumen diameter. In the saccular stage (rabbit) the frequency was 10 to 12/min with a narrowing of approximately 30%. In the organ cultures the waves of narrowing started at the trachea in whole lungs, or at the main bronchus in lobes (5.2 +/- 1.5 contractions/min, 22 +/- 8% reduction of lumen diameter), and as they proceeded distally along the epithelial tubes the luminal liquid was shifted toward the terminal tubules, which expanded the endbuds. As the tubules relaxed the flow of liquid was reversed. Thus the behavior of airway smooth muscle in the fetal lung is phasic in type (like gastrointestinal muscle) in contrast to that in postnatal lung, where it is tonic. An intraluminal positive pressure of 2.33 +/- 0.77 cm H(2)O was recorded in rabbit fetal trachea. It is proposed that the active tone of the smooth muscle maintains the positive intraluminal pressure and acts as a stimulus to lung growth via the force exerted across the airway wall and adjacent parenchyma. The expansion of the compliant endbuds by the fluid shifts at the airway tip may promote their growth into the surrounding mesenchyme.
Resumo:
A 7-year-old boy was presented with a long-standing slowly growing mass of the left supraorbital area. A biopsy specimen revealed a bland spindle cell proliferation with scattered polygonal cells with acidophilic cytoplasm and cross-striations. Our differential diagnosis included rhabdomyoma of fetal type, leiomyoma with trapping of regenerating skeletal muscle elements, and rhabdomyomatous mesenchymal hamartoma of the skin. Immunohistochemistry demonstrated strong positivity of myoglobin and desmin as well as negativity of caldesmon, suggesting skeletal muscle lineage. The excisional specimen confirmed our diagnosis of cutaneous fetal rhabdomyoma of intermediate type. Additional immunostaining performed on the excisional specimen showed strong Wilms Tumor 1 but only a very faint and focal p63 expression.
Resumo:
MATERNO-FETAL NUTRIENT TRANSFER ACROSS PRIMARY HUMAN TROPHOBLAST MONOLAYER Objectives: Polarized trophoblasts represent the transport and metabolic barrier between the maternal and fetal circulation. Currently human placental nutrient transfer in vitro is mainly investigated unidirectionallyon cultured primary trophoblasts, or bidirectionally on the Transwell® system using BeWo cells treated with forskolin. As forskolin can induce various gene alterations (e.g. cAMP response element genes), we aimed to establish a physiological primary trophoblast model for materno-fetal nutrient exchange studies without forskolin application. Methods: Human term cytotrophoblasts were isolated by enzymatic digestion and Percoll® gradient separation. The purity of the primary cells was assessed by flow cytometry using the trophoblast-specific marker cytokeratin-7. After screening different coating matrices, we optimized the growth conditions for the primary cytotrophoblasts on Transwell/ inserts. The morphology of 5 days cultured trophoblasts was determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally transport studies were performed on the polarized trophoblasts in the Transwell® system. Results: During 5 days culture, the trophoblasts (>90% purity) developed a modest trans-epithelial electrical resistance (TEER) and a sizedependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ~400-70’000D). SEM analyses confirmed a confluent trophoblast layer with numerous microvilli at day six, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein ZO-1, and the membrane proteins ABCA1 and Na+/K+-ATPase. Vectorial glucose and cholesterol transport studies confirmed functionality of the cultured trophoblast barrier. Conclusion: Evidence from cell morphology, biophysical parameters and cell marker expressions indicate the successful and reproducible establishment of a primary trophoblast monolayer model suitable for transport studies. Application of this model to pathological trophoblasts will help to better understand the mechanism underlying gestational diseases, and to define the consequences of placental pathology on materno-fetal nutrient transport.
Resumo:
BACKGROUND Fetal weight estimation (FWE) is an important factor for clinical management decisions, especially in imminent preterm birth at the limit of viability between 23(0/7) and 26(0/7) weeks of gestation. It is crucial to detect and eliminate factors that have a negative impact on the accuracy of FWE. DATA SOURCES In this systematic literature review, we investigated 14 factors that may influence the accuracy of FWE, in particular in preterm neonates born at the limit of viability. RESULTS We found that gestational age, maternal body mass index, amniotic fluid index and ruptured membranes, presentation of the fetus, location of the placenta and the presence of multiple fetuses do not seem to have an impact on FWE accuracy. The influence of the examiner's grade of experience and that of fetal gender were discussed controversially. Fetal weight, time interval between estimation and delivery and the use of different formulas seem to have an evident effect on FWE accuracy. No results were obtained on the impact of active labor. DISCUSSION This review reveals that only few studies investigated factors possibly influencing the accuracy of FWE in preterm neonates at the limit of viability. Further research in this specific age group on potential confounding factors is needed.
Resumo:
OBJECTIVES Megacystis (MC) is rare and often associated with other structural and chromosomal anomalies. In euploid cases with early oligohydramnios, prognosis is poor mainly due to pulmonary hypoplasia and renal damage. We report our experience of the past 20 years. METHODS A retrospective review of cases with prenatally diagnosed MC was performed. Complete prenatal as well as postnatal medical records from 1989 to 2009 were reviewed focusing on diagnostic precision, fetal interventions [vesicocentesis (VC), vesicoamniotic shunt (VAS)], short- and long-term outcome, and potential prognostic factors. RESULTS 68 cases were included. Follow-up was available in 54 cases (9 girls and 45 boys including 3 cases with aneuploidy). We found 39 isolated MC at sonography (5 girls and 34 boys). 24 fetuses with isolated MC underwent VC and VAS at 19.6 ± 6.3 and 20 ± 4.9 weeks of gestation, respectively. Survival rate was higher in male than in female fetuses (51 vs. 33%). Renal problems occurred in 4/14 prenatally treated fetuses and in 1/10 when cases with prune belly syndrome (PBS) were excluded from the analysis. CONCLUSIONS Our study shows that a careful selection of cases with MC excluding fetuses with PBS and early treatment has still the potential to improve outcome.
Resumo:
The purpose of this article is to provide an overview of the possibilities for fetal magnetic resonance imaging (MRI) in the evaluation of the fetal brain. For brain pathologies, fetal MRI is usually performed when an abnormality is detected by previous prenatal ultrasound, and is, therefore, an important adjunct to ultrasound. The most commonly suspected brain pathologies referred to fetal MRI for further evaluation are ventriculomegaly, missing corpus callosum, and abnormalities of the posterior fossa. We will briefly discuss the most common indications for fetal brain MRI, as well as recent advances.
Resumo:
Background: The therapy of retained fetal membranes (RFM) is a controversial subject. In Switzerland, intrauterine antibiotics are routinely administered although their effect on fertility parameters is questionable. The objective of this study was to compare the post-partal period after a routine treatment of RFM in 2 groups: one group received a placebo additionally (A), whereas the other group received a phytotherapeutic substance (lime bark) (B) additionally. The routine treatment of RFM included an attempt to manually remove the fetal membranes (for a maximum of 5 min), intramuscular administration of oxytetracycline and intrauterine treatment with tetracycline. In case of an elevated rectal temperature (>39.0°C), an additional non-steroidal inflam-matory drug was allowed. Methods: Cows undergoing caesarean section, suffering from prolapse of the uterus, deep cervical or vaginal injuries, hypocalcaemia, and illnesses during the last 14 days before calving were excluded. Cows had to be more than 265 days pregnant. Only cows that were artificially inseminated after RFM were included. Group stratification was done according to the last number on the ear tag (even/uneven) with (n = 50) cows in group A and (n = 55) cows in group B. Results: The number of treatments after the initial treatment of RFM was not significantly different between groups. The median interval from calving to the first insemination was 77 days in group A compared to 82 days in group B (p = 0.72). The number of AI’s until conception was not significantly different between groups. The median number of days open was 89 days in group A compared to 96 days in group B (p = 0.57). The culling rate was not significantly different between groups. Conclusion: There was neither a difference between the groups concerning therapies within the first 50 days after RFM nor concerning the subsequent fertility variables.
Resumo:
The aim of the study was to obtain the diagnostic and therapeutic approach among Swiss practitioners in cows with puerperal metritis and clinical endometritis (part 2). All members of the Association for ruminant health were contacted per email via the newsletter. The survey was completed by 128 veterinarians, partially responded by 140 veterinarians. The following main symptoms of puerperal metritis were stated by the practitioners: purulent vaginal discharge, fever and reduced appetite. A vaginal and rectal examination was performed to diagnose the disease. Usually, an intrauterine treatment with tetracycline or cefapirin was done. Parenteral administration of tetracycline or penicillin was often combined with PGF(2α), NSAIDS or cortisone. Clinical endometritis was also diagnosed by vaginal and rectal examination and the main symptom indicated was purulent vaginal discharge. The therapy consisted of the administration of PGF(2α), uterine infusions predominantly with cefapirin, and rarely with parenteral administration of antibiotics. Further diagnostic tools were not used and normally cows were not rechecked. The success of the therapy of puerperal metritis and clinical endometritis was judged to be satisfactory to excellent.
Resumo:
The aim of this study was to obtain the diagnostic and therapeutic approach among Swiss practitioners in cows with retained fetal membranes (RFM) (part 1). All members of the Association for ruminant health were contacted per email via the newsletter. The survey was completed by 128 veterinarians, partially responded by 140 veterinarians. The manual removal of the fetal membranes is practiced by 129 of the responding veterinarians. Cows with/without fever are treated usually with intrauterine antibiotics. Cows with RFM with/without fever are most commonly treated parenterally with tetracycline or penicillin. The use of cephalosporins and quinolones in cows with fever is more common than in cows without fever. With the present results of the survey veterinarians should critically question the supposed benefits of the manual removal of the placenta and the use of antibiotics in cows with RFM.
Resumo:
PURPOSE OF REVIEW To provide an overview of available evidence of the potential role of epigenetics in the pathogenesis of hypertension and vascular dysfunction. RECENT FINDINGS Arterial hypertension is a highly heritable condition. Surprisingly, however, genetic variants only explain a tiny fraction of the phenotypic variation and the term 'missing heritability' has been coined to describe this phenomenon. Recent evidence suggests that phenotypic alteration that is unrelated to changes in DNA sequence (thereby escaping detection by classic genetic methodology) offers a potential explanation. Here, we present some basic information on epigenetics and review recent work consistent with the hypothesis of epigenetically induced arterial hypertension. SUMMARY New technologies that enable the rigorous assessment of epigenetic changes and their phenotypic consequences may provide the basis for explaining the missing heritability of arterial hypertension and offer new possibilities for treatment and/or prevention.