106 resultados para exponential decay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this paper is to establish exponential convergence of $hp$-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the convergence of the $hp$-IP dG methods considered in [D. Schötzau, C. Schwab, T. P. Wihler, SIAM J. Numer. Anal., 51 (2013), pp. 1610--1633] based on axiparallel $\sigma$-geometric anisotropic meshes and $\bm{s}$-linear anisotropic polynomial degree distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive closed expressions and useful expansions for the contributions of the tree-level W-boson propagator to the the muon and tau leptonic decay rates. Calling M and m the masses of the initial and final charged leptons, our results in the limit m=0 are valid to all orders in M^2/M_W^2. In the terms of O(m_j^2/M_W^2) (m_j=M,m), our leading corrections, of O(M^2/M_W^2), agree with the canonical value (3/5) M^2/M_W^2, while the coefficient of our subleading contributions, of O(m^2/M_W^2), differs from that reported in the recent literature. A possible explanation of the discrepancy is presented. The numerical effect of the O(m_j^2/M_W^2) corrections is briefly discussed. A general expression, valid for arbitrary values of M_W, M and m in the range M_W>M>m, is given in the Appendix. The paper also contains a review of the traditional definition and evaluation of the Fermi constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined in detail the electron spectrum in the decay of bound muons. These results are especially relevant for the upcoming μ − e conversion experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction Ca48+Am243. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a new measurement of the neutron beta-asymmetry parameter A with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1) from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=−0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=−1.2767(16)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serial correlation of extreme midlatitude cyclones observed at the storm track exits is explained by deviations from a Poisson process. To model these deviations, we apply fractional Poisson processes (FPPs) to extreme midlatitude cyclones, which are defined by the 850 hPa relative vorticity of the ERA interim reanalysis during boreal winter (DJF) and summer (JJA) seasons. Extremes are defined by a 99% quantile threshold in the grid-point time series. In general, FPPs are based on long-term memory and lead to non-exponential return time distributions. The return times are described by a Weibull distribution to approximate the Mittag–Leffler function in the FPPs. The Weibull shape parameter yields a dispersion parameter that agrees with results found for midlatitude cyclones. The memory of the FPP, which is determined by detrended fluctuation analysis, provides an independent estimate for the shape parameter. Thus, the analysis exhibits a concise framework of the deviation from Poisson statistics (by a dispersion parameter), non-exponential return times and memory (correlation) on the basis of a single parameter. The results have potential implications for the predictability of extreme cyclones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonsense-mediated mRNA decay (NMD) pathway is best known as a translation-coupled quality control system that recognizes and degrades aberrant mRNAs with ORF-truncating premature termination codons (PTCs), but a more general role of NMD in posttranscriptional regulation of gene expression is indicated by transcriptome-wide mRNA profilings that identified a plethora of physiological mRNAs as NMD substrates. We try to decipher the mechanism of mRNA targeting to the NMD pathway in human cells. Recruitment of the conserved RNA-binding helicase UPF1 to target mRNAs has been reported to occur through interaction with release factors at terminating ribosomes, but evidence for translation-independent interaction of UPF1 with the 3’ untranslated region (UTR) of mRNAs has also been reported. We have transcriptome-wide determined the UPF1 binding sites by individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) in human cells, untreated or after inhibiting translation. We detected a strongly enriched association of UPF1 with 3’ UTRs in undisturbed, translationally active cells. After translation inhibition, a significant increase in UPF1 binding to coding sequence (CDS) was observed, indicating that UPF1 binds RNA before translation and gets displaced from the CDS by translating ribosomes. This suggests that the decision to trigger NMD occurs after association of UPF1 with mRNA, presumably through activation of RNA-bound UPF1 by aberrant translation termination. In a second recent study, we re-visited the reported restriction of NMD in mammals to the ‘pioneer round of translation’, i.e. to cap-binding complex (CBC)-bound mRNAs. The limitation of mammalian NMD to early rounds of translation would indicate a – from an evolutionary perspective – unexpected mechanistic difference to NMD in yeast and plants, where PTC-containing mRNAs seem to be available to NMD at each round of translation. In contrast to previous reports, our comparison of decay kinetics of two NMD reporter genes in mRNA fractions bound to either CBC or the eukaryotic initiation factor 4E (eIF4E) in human cells revealed that NMD destabilizes eIF4E-bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.