95 resultados para elettrofilatura membrane nanofibrose in Nylon 66 CFRP contrasto alla delaminazione test DCB
Resumo:
Velocity recovery cycles (VRCs) of human muscle action potentials have been proposed as a new technique for assessing muscle membrane function in myopathies. This study was undertaken to determine the variability and repeatability of VRC measures such as supernormality, to help guide future clinical use of the method.
Resumo:
In this article we propose a bootstrap test for the probability of ruin in the compound Poisson risk process. We adopt the P-value approach, which leads to a more complete assessment of the underlying risk than the probability of ruin alone. We provide second-order accurate P-values for this testing problem and consider both parametric and nonparametric estimators of the individual claim amount distribution. Simulation studies show that the suggested bootstrap P-values are very accurate and outperform their analogues based on the asymptotic normal approximation.
Resumo:
George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations-more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad-scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early-burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long-term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.
Resumo:
Fast quantitative MRI has become an important tool for biochemical characterization of tissue beyond conventional T1, T2, and T2*-weighted imaging. As a result, steady-state free precession (SSFP) techniques have attracted increased interest, and several methods have been developed for rapid quantification of relaxation times using steady-state free precession. In this work, a new and fast approach for T2 mapping is introduced based on partial RF spoiling of nonbalanced steady-state free precession. The new T2 mapping technique is evaluated and optimized from simulations, and in vivo results are presented for human brain at 1.5 T and for human articular cartilage at 3.0 T. The range of T2 for gray and white matter was from 60 msec (for the corpus callosum) to 100 msec (for cortical gray matter). For cartilage, spatial variation in T2 was observed between deep (34 msec) and superficial (48 msec) layers, as well as between tibial (33 msec), femoral, (54 msec) and patellar (43 msec) cartilage. Excellent correspondence between T2 values derived from partially spoiled SSFP scans and the ones found with a reference multicontrast spin-echo technique is observed, corroborating the accuracy of the new method for proper T2 mapping. Finally, the feasibility of a fast high-resolution quantitative partially spoiled SSFP T2 scan is demonstrated at 7.0 T for human patellar cartilage.
Resumo:
A 20-channel phased-array coil for MRI of mice has been designed, constructed, and validated with bench measurements and high-resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3- and 1.3-fold, respectively. Comparison with a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of twofold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images.
Resumo:
Renal excretion of citrate, an inhibitor of calcium stone formation, is controlled mainly by reabsorption via the apical Na(+)-dicarboxylate cotransporter NaDC1 (SLC13A2) in the proximal tubule. Recently, it has been shown that the protein phosphatase calcineurin inhibitors cyclosporin A (CsA) and FK-506 induce hypocitraturia, a risk factor for nephrolithiasis in kidney transplant patients, but apparently through urine acidification. This suggests that these agents up-regulate NaDC1 activity. Using the Xenopus lævis oocyte and HEK293 cell expression systems, we examined first the effect of both anti-calcineurins on NaDC1 activity and expression. While FK-506 had no effect, CsA reduced NaDC1-mediated citrate transport by lowering heterologous carrier expression (as well as endogenous carrier expression in HEK293 cells), indicating that calcineurin is not involved. Given that CsA also binds specifically to cyclophilins, we determined next whether such proteins could account for the observed changes by examining the effect of selected cyclophilin wild types and mutants on NaDC1 activity and cyclophilin-specific siRNA. Interestingly, our data show that the cyclophilin isoform B is likely responsible for down-regulation of carrier expression by CsA and that it does so via its chaperone activity on NaDC1 (by direct interaction) rather than its rotamase activity. We have thus identified for the first time a regulatory partner for NaDC1, and have gained novel mechanistic insight into the effect of CsA on renal citrate transport and kidney stone disease, as well as into the regulation of membrane transporters in general.
Resumo:
The utility of quantitative Pneumocystis jirovecii PCR in clinical routine for diagnosing Pneumocystis pneumonia (PCP) in immunocompromised non-HIV patients is unknown. We analysed bronchoalveolar lavage fluid with real-time quantitative P. jirovecii PCR in 71 cases with definitive PCP defined by positive immunofluorescence (IF) tests and in 171 randomly selected patients with acute lung disease. In those patients, possible PCP cases were identified by using a novel standardised PCP probability algorithm and chart review. PCR performance was compared with IF testing, clinical judgment and the PCP probability algorithm. Quantitative P. jirovecii PCR values >1,450 pathogens·mL(-1) had a positive predictive value of 98.0% (95% CI 89.6-100.0%) for diagnosing definitive PCP. PCR values of between 1 and 1,450 pathogens·mL(-1) were associated with both colonisation and infection; thus, a cut-off between the two conditions could not be identified and diagnosis of PCP in this setting relied on IF and clinical assessment. Clinical PCP could be ruled out in 99.3% of 153 patients with negative PCR results. Quantitative PCR is useful for diagnosing PCP and is complementary to IF. PCR values of >1,450 pathogens·mL(-1) allow reliable diagnosis, whereas negative PCR results virtually exclude PCP. Intermediate values require additional clinical assessment and IF testing. On the basis of our data and for economic and logistical limitations, we propose a clinical algorithm in which IF remains the preferred first test in most cases, followed by PCR in those patients with a negative IF and strong clinical suspicion for PCP.
Resumo:
Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to adhere to and invade intestinal epithelial cells (IEC), and to survive within macrophages. The interaction of AIEC with IEC depends on bacterial factors mainly type 1 pili, flagella, and outer membrane proteins. In humans, proteases can act as host defence mechanisms to counteract bacterial colonization. The protease meprin, composed of multimeric complexes of the two subunits alpha and beta, is abundantly expressed in IECs. Decreased levels of this protease correlate with the severity of the inflammation in patients with inflammatory bowel disease. The aim of the present study was to analyze the ability of meprin to modulate the interaction of AIEC with IECs. In patients with ileal CD we observed decreased levels of meprins, in particular that of meprin β. Dose-dependent inhibition of the abilities of AIEC strain LF82 to adhere to and invade intestinal epithelial T84 cells was observed when bacteria were pre-treated with both exogenous meprin α and meprin β. Dose-dependent proteolytic degradation of type 1 pili was observed in the presence of active meprins, but not with heat-inactivated meprins, and pretreatment of AIEC bacteria with meprins impaired their ability to bind mannosylated host receptors and led to decreased secretion of the pro-inflammatory cytokine IL-8 by infected T84 cells. Thus, decreased levels of protective meprins as observed in CD patients may contribute to increased AIEC colonization.
Resumo:
The effect of treatment with eprinomectin on milk yield, milk composition and somatic cell counts (SCCs) was studied in 105 dairy cows located on seven farms in South Tyrol, Italy. On each farm, half of the animals were treated with eprinomectin and the other half were used as an untreated control group. Three test day records per animal were obtained before treatment (days -117, -75 and -33) and another three test day records were obtained after treatment (days 22, 62 and 131). Test day records comprised milk yield, milk composition, SCC and days in milk. On the day of treatment, blood samples and faecal samples were taken for parasitological analysis. Cows with positive faecal egg counts yielded less milk. A significant effect of eprinomectin on milk yield was observed after treatment and was most pronounced on the second and the third test days after treatment (+1.90 kg [P=0.002] and +2.63 kg [P<0.001], respectively). Furthermore, a significant decrease in SCC was observed on the second test day after treatment.
Resumo:
Vascular and soft tissue calcification contributes to cardiovascular morbidity and mortality in both the general population and CKD. Because calcium and phosphate serum concentrations are near supersaturation, the balance of inhibitors and promoters critically influences the development of calcification. An assay that measures the overall propensity for calcification to occur in serum may have clinical use. Here, we describe a nanoparticle-based assay that detects, in the presence of artificially elevated calcium and phosphate concentrations, the spontaneous transformation of spherical colloidal primary calciprotein particles (CPPs) to elongate crystalline secondary CPPs. We used characteristics of this transition to describe the intrinsic capacity of serum to inhibit the precipitation of calcium and phosphate. Using this assay, we found that both the sera of mice deficient in fetuin-A, a serum protein that inhibits calcification, and the sera of patients on hemodialysis have reduced intrinsic properties to inhibit calcification. In summary, we developed a nanoparticle-based test that measures the overall propensity for calcification in serum. The clinical use of the test requires evaluation in a prospective study.
Resumo:
During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α). Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα) phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB). The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis). Our data suggest that remifentanil increases cellular respiration of human hepatocytes and prevents TNF-α-induced mitochondrial dysfunction. The results were not explained by uncoupling of mitochondrial respiration.
Resumo:
The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) allows for global retrievals of the ratio HDO/H2O in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm−1 and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H2O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H2O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007) spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H2O columns decrease by 2–4% and we find a negative shift of the HDO/H2O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H2O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H2O ratio.
Resumo:
Continuous changes in the length of smooth muscles require a highly organized sarcolemmal structure. Yet, smooth muscle cells also adapt rapidly to altered environmental cues. Their sarcolemmal plasticity must lead to profound changes which affect transmembrane signal transduction as well as contractility. We have established porcine vascular and human visceral smooth muscle cultures of epithelioid and spindle-shaped morphology and determined their plasma membrane properties. Epithelioid cells from both sources contain a higher ratio of cholesterol to glycerophospholipids, and express a less diverse range of lipid-associated annexins. These findings point to a reduction in efficiency of membrane segregation in epithelioid cells. Moreover, compared to spindle-shaped cells, cholesterol is more readily extracted from epithelioid cells with methyl-beta-cyclodextrin and its synthesis is more susceptible to inhibition with lovastatin. The inability of epithelioid cells to process vasoactive metabolites, such as angiotensin or nucleotides further indicates that contractile properties are impaired. Phenotypic plasticity extends beyond the loss of smooth muscle cell marker genes. The plasma membrane has undergone profound functional changes which are incompatible with cyclic foreshortening, but might be important in the development of vascular disease.
Resumo:
The annexins are a multigene family of Ca(2+)- and charged phospholipid-binding proteins. Although they have been ascribed with diverse functions, there is no consensus about the role played by this family as a whole. We have mapped the Ca(2+)-induced translocations of four members of the annexin family and of two truncated annexins in live cells, and demonstrated that these proteins interact with the plasma membrane as well as with internal membrane systems in a highly coordinated manner. Annexin 2 was the most Ca(2+) sensitive of the studied proteins, followed by annexins 6, 4 and 1. The calcium sensitivity of annexin 2 increased further following co-expression with S100A10. Upon elevation of [Ca(2+)](i), annexins 2 and 6 translocated to the plasma membrane, whereas annexins 4 and 1 also became associated with intracellular membranes and the nuclear envelope. The NH(2)-terminus had a modulatory effect on plasma membrane binding: its truncation increased the Ca(2+) sensitivity of annexin 1, and decreased that of annexin 2. Given the fact that several annexins are present within any one cell, it is likely that they form a sophisticated [Ca(2+)] sensing system, with a regulatory influence on other signaling pathways.
Resumo:
AIMS: The adaptation of the myocardial microcirculation in humans to pathologic and physiologic stress has not been examined in vivo so far. We sought to test whether the relative blood volume (rBV) measured by myocardial contrast echocardiography (MCE) can differentiate between left ventricular (LV) hypertrophy (LVH) in hypertensive heart disease and athlete's heart. METHODS AND RESULTS: Four groups were investigated: hypertensive patients with LVH (n = 15), semi-professional triathletes with LVH (n = 15), professional football players (n = 15), and sedentary control individuals without cardiovascular disease (n = 15). MCE was performed at rest and during adenosine-induced hyperaemia. The rBV (mL mL(-1)), its exchange frequency (beta, min(-1)), and myocardial blood flow (mL min(-1) g(-1)) were derived from steady state and refill sequences of ultrasound contrast agent. Hypertensive patients had lower rBV (0.093 +/- 0.013 mL mL(-1)) than triathletes (0.141 +/- 0.012 mL mL(-1), P < 0.001), football players (0.129 +/- 0.014 mL mL(-1), P < 0.001), and sedentary individuals (0.126 +/- 0.018 mL mL(-1), P < 0.001). Conversely, the exchange frequency (beta) was significantly higher in hypertensive patients (11.3 +/- 3.8 min(-1)) than in triathletes (7.4 +/- 1.8 min(-1)), football players (7.7 +/- 2.3 min(-1)), and sedentary individuals (9.0+/-2.5 min(-1)). An rBV below 0.114 mL mL(-1) distinguished hypertensive patients and triathletes with a sensitivity of 93% and a specificity of 100%. CONCLUSION: Pathologic and physiologic LVH were differentiated non-invasively and accurately by rBV, a measure of vascularisation assessed by MCE.