104 resultados para computer science visualization usability human interaction ux open data geographical
Resumo:
This paper introduces a mobile application (app) as the first part of an interactive framework. The framework enhances the inter-action between cities and their citizens, introducing the Fuzzy Analytical Hierarchy Process (FAHP) as a potential information acquisition method to improve existing citizen management en-deavors for cognitive cities. Citizen management is enhanced by advanced visualization using Fuzzy Cognitive Maps (FCM). The presented app takes fuzziness into account in the constant inter-action and continuous development of communication between cities or between certain of their entities (e.g., the tax authority) and their citizens. A transportation use case is implemented for didactical reasons.
Resumo:
Content Distribution Networks are mandatory components of modern web architectures, with plenty of vendors offering their services. Despite its maturity, new paradigms and architecture models are still being developed in this area. Cloud Computing, on the other hand, is a more recent concept which has expanded extremely quickly, with new services being regularly added to cloud management software suites such as OpenStack. The main contribution of this paper is the architecture and the development of an open source CDN that can be provisioned in an on-demand, pay-as-you-go model thereby enabling the CDN as a Service paradigm. We describe our experience with integration of CDNaaS framework in a cloud environment, as a service for enterprise users. We emphasize the flexibility and elasticity of such a model, with each CDN instance being delivered on-demand and associated to personalized caching policies as well as an optimized choice of Points of Presence based on exact requirements of an enterprise customer. Our development is based on the framework developed in the Mobile Cloud Networking EU FP7 project, which offers its enterprise users a common framework to instantiate and control services. CDNaaS is one of the core support components in this project as is tasked to deliver different type of multimedia content to several thousands of users geographically distributed. It integrates seamlessly in the MCN service life-cycle and as such enjoys all benefits of a common design environment, allowing for an improved interoperability with the rest of the services within the MCN ecosystem.
Resumo:
Medical doctors often do not trust the result of fully automatic segmentations because they have no possibility to make corrections if necessary. On the other hand, manual corrections can introduce a user bias. In this work, we propose to integrate the possibility for quick manual corrections into a fully automatic segmentation method for brain tumor images. This allows for necessary corrections while maintaining a high objectiveness. The underlying idea is similar to the well-known Grab-Cut algorithm, but here we combine decision forest classification with conditional random field regularization for interactive segmentation of 3D medical images. The approach has been evaluated by two different users on the BraTS2012 dataset. Accuracy and robustness improved compared to a fully automatic method and our interactive approach was ranked among the top performing methods. Time for computation including manual interaction was less than 10 minutes per patient, which makes it attractive for clinical use.
Resumo:
Modal public announcement logics study how beliefs change after public announcements. However, these logics cannot express the reason for a new belief. Justification logics fill this gap since they can formally represent evidence and justifications for an agent's belief. We present OPAL(K) and JPAL(K) , two alternative justification counterparts of Gerbrandy–Groeneveld's public announcement logic PAL(K) . We show that PAL(K) is the forgetful projection of both OPAL(K) and JPAL(K) . We also establish that JPAL(K) partially realizes PAL(K) . The question whether a similar result holds for OPAL(K) is still open.
Resumo:
Image denoising continues to be an active research topic. Although state-of-the-art denoising methods are numerically impressive and approch theoretical limits, they suffer from visible artifacts.While they produce acceptable results for natural images, human eyes are less forgiving when viewing synthetic images. At the same time, current methods are becoming more complex, making analysis, and implementation difficult. We propose image denoising as a simple physical process, which progressively reduces noise by deterministic annealing. The results of our implementation are numerically and visually excellent. We further demonstrate that our method is particularly suited for synthetic images. Finally, we offer a new perspective on image denoising using robust estimators.
Resumo:
Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Our method to evaluate the synchronization accuracy is inspired by signal processing algorithms and relies on fine grain time information. The method is able to calculate the clock offset and skew between devices with nanosecond accuracy in real time. It was implemented using software defined radio technology. We demonstrate that GPS-based synchronization suffers from remaining clock offset in the range of a few hundred of nanoseconds but the clock skew is negligible. Finally, we determine a corresponding lower bound on the expected positioning error.
Resumo:
Femoroacetabular impingement (FAI) before or after Periacetabular Osteotomy (PAO) is surprisingly frequent and surgeons need to be aware of the risk preoperatively and be able to avoid it intraoperatively. In this paper we present a novel computer assisted planning and navigation system for PAO with impingement analysis and range of motion (ROM) optimization. Our system starts with a fully automatic detection of the acetabular rim, which allows for quantifying the acetabular morphology with parameters such as acetabular version, inclination and femoral head coverage ratio for a computer assisted diagnosis and planning. The planned situation was optimized with impingement simulation by balancing acetabuar coverage with ROM. Intra-operatively navigation was conducted until the optimized planning situation was achieved. Our experimental results demonstrated: 1) The fully automated acetabular rim detection was validated with accuracy 1.1 ± 0.7mm; 2) The optimized PAO planning improved ROM significantly compared to that without ROM optimization; 3) By comparing the pre-operatively planned situation and the intra-operatively achieved situation, sub-degree accuracy was achieved for all directions.
Resumo:
Software developers often ask questions about software systems and software ecosystems that entail exploration and navigation, such as who uses this component?, and where is this feature implemented?. Software visualisation can be a great aid to understanding and exploring the answers to such questions, but visualisations require expertise to implement effectively, and they do not always scale well to large systems. We propose to automatically generate software visualisations based on software models derived from open source software corpora and from an analysis of the properties of typical developers queries and commonly used visualisations. The key challenges we see are (1) understanding how to match queries to suitable visualisations, and (2) scaling visualisations effectively to very large software systems and corpora. In the paper we motivate the idea of automatic software visualisation, we enumerate the challenges and our proposals to address them, and we describe some very initial results in our attempts to develop scalable visualisations of open source software corpora.
Resumo:
Detecting bugs as early as possible plays an important role in ensuring software quality before shipping. We argue that mining previous bug fixes can produce good knowledge about why bugs happen and how they are fixed. In this paper, we mine the change history of 717 open source projects to extract bug-fix patterns. We also manually inspect many of the bugs we found to get insights into the contexts and reasons behind those bugs. For instance, we found out that missing null checks and missing initializations are very recurrent and we believe that they can be automatically detected and fixed.
Resumo:
Software developers are often unsure of the exact name of the method they need to use to invoke the desired behavior in a given context. This results in a process of searching for the correct method name in documentation, which can be lengthy and distracting to the developer. We can decrease the method search time by enhancing the documentation of a class with the most frequently used methods. Usage frequency data for methods is gathered by analyzing other projects from the same ecosystem - written in the same language and sharing dependencies. We implemented a proof of concept of the approach for Pharo Smalltalk and Java. In Pharo Smalltalk, methods are commonly searched for using a code browser tool called "Nautilus", and in Java using a web browser displaying HTML based documentation - Javadoc. We developed plugins for both browsers and gathered method usage data from open source projects, in order to increase developer productivity by reducing method search time. A small initial evaluation has been conducted showing promising results in improving developer productivity.
Resumo:
Cloudification of the Centralized-Radio Access Network (C-RAN) in which signal processing runs on general purpose processors inside virtual machines has lately received significant attention. Due to short deadlines in the LTE Frequency Division Duplex access method, processing time fluctuations introduced by the virtualization process have a deep impact on C-RAN performance. This paper evaluates bottlenecks of the OpenAirInterface (OAI is an open-source software-based implementation of LTE) cloud performance, provides feasibility studies on C-RAN execution, and introduces a cloud architecture that significantly reduces the encountered execution problems. In typical cloud environments, the OAI processing time deadlines cannot be guaranteed. Our proposed cloud architecture shows good characteristics for the OAI cloud execution. As an example, in our setup more than 99.5% processed LTE subframes reach reasonable processing deadlines close to performance of a dedicated machine.
Resumo:
Extraction of both pelvic and femoral surface models of a hip joint from CT data for computer-assisted pre-operative planning of hip arthroscopy is addressed. We present a method for a fully automatic image segmentation of a hip joint. Our method works by combining fast random forest (RF) regression based landmark detection, atlas-based segmentation, with articulated statistical shape model (aSSM) based hip joint reconstruction. The two fundamental contributions of our method are: (1) An improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the atlas-based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Validation on 30 hip CT images show that our method achieves high performance in segmenting pelvis, left proximal femur, and right proximal femur surfaces with an average accuracy of 0.59 mm, 0.62 mm, and 0.58 mm, respectively.
Resumo:
Many technological developments of the past two decades come with the promise of greater IT flexi-bility, i.e. greater capacity to adapt IT. These technologies are increasingly used to improve organiza-tional routines that are not affected by large, hard-to-change IT such as ERP. Yet, most findings on the interaction of routines and IT stem from contexts where IT is hard to change. Our research ex-plores how routines and IT co-evolve when IT is flexible. We review the literatures on routines to sug-gest that IT may act as a boundary object that mediates the learning process unfolding between the ostensive and the performative aspect of the routine. Although prior work has concluded from such conceptualizations that IT stabilizes routines, we qualify that flexible IT can also stimulate change because it enables learning in short feedback cycles. We suggest that, however, such change might not always materialize because it is contingent on governance choices and technical knowledge. We de-scribe the case-study method to explore how routines and flexible IT co-evolve and how governance and technical knowledge influence this process. We expect to contribute towards stronger theory of routines and to develop recommendations for the effective implementation of flexible IT in loosely coupled routines.
Resumo:
In retinal surgery, surgeons face difficulties such as indirect visualization of surgical targets, physiological tremor, and lack of tactile feedback, which increase the risk of retinal damage caused by incorrect surgical gestures. In this context, intraocular proximity sensing has the potential to overcome current technical limitations and increase surgical safety. In this paper, we present a system for detecting unintentional collisions between surgical tools and the retina using the visual feedback provided by the opthalmic stereo microscope. Using stereo images, proximity between surgical tools and the retinal surface can be detected when their relative stereo disparity is small. For this purpose, we developed a system comprised of two modules. The first is a module for tracking the surgical tool position on both stereo images. The second is a disparity tracking module for estimating a stereo disparity map of the retinal surface. Both modules were specially tailored for coping with the challenging visualization conditions in retinal surgery. The potential clinical value of the proposed method is demonstrated by extensive testing using a silicon phantom eye and recorded rabbit in vivo data.