97 resultados para cardiomyocytes
Resumo:
Structural remodeling of the myocardium associated with mechanical overload or cardiac infarction is accompanied by the appearance of myofibroblasts. These fibroblast-like cells express alpha-smooth muscle actin (alphaSMA) and have been shown to express connexins in tissues other than heart. The present study examined whether myofibroblasts of cardiac origin establish heterocellular gap junctional coupling with cardiomyocytes and whether ensuing electrotonic interactions affect impulse propagation. For this purpose, impulse conduction characteristics (conduction velocity [theta] and maximal upstroke velocity [dV/dtmax]) were assessed optically in cultured strands of cardiomyocytes, which were coated with fibroblasts of cardiac origin. Immunocytochemistry showed that cultured fibroblasts underwent a phenotype switch to alphaSMA-positive myofibroblasts that expressed connexin 43 and 45 both among themselves and at contact sites with cardiomyocytes. Myofibroblasts affected theta and dV/dtmax in a cell density-dependent manner; a gradual increase of myofibroblast-to-cardiomyocyte ratios up to 7:100 caused an increase of both theta and dV/dtmax, which was followed by a progressive decline at higher ratios. On full coverage of the strands with myofibroblasts (ratio >20:100), theta fell <200 mm/s. This biphasic dependence of theta and dV/dtmax on myofibroblast density is reminiscent of "supernormal conduction" and is explained by a myofibroblast density-dependent gradual depolarization of the cardiomyocyte strands from -78 mV to -50 mV as measured using microelectrode recordings. These findings suggest that myofibroblasts, apart from their role in structural remodeling, might contribute to arrhythmogenesis by direct electrotonic modulation of conduction and that prevention of their appearance might represent an antiarrhythmic therapeutic target.
Resumo:
Cell-based therapies and tissue engineering initiatives are gathering clinical momentum for next-generation treatment of tissue deficiencies. By using gravity-enforced self-assembly of monodispersed primary cells, we have produced adult and neonatal rat cardiomyocyte-based myocardial microtissues that could optionally be vascularized following coating with human umbilical vein endothelial cells (HUVECs). Within myocardial microtissues, individual cardiomyocytes showed native-like cell shape and structure, and established electrochemical coupling via intercalated disks. This resulted in the coordinated beating of microtissues, which was recorded by means of a multi-electrode complementary metal-oxide-semiconductor microchip. Myocardial microtissues (microm3 scale), coated with HUVECs and cast in a custom-shaped agarose mold, assembled to coherent macrotissues (mm3 scale), characterized by an extensive capillary network with typical vessel ultrastructures. Following implantation into chicken embryos, myocardial microtissues recruited the embryo's capillaries to functionally vascularize the rat-derived tissue implant. Similarly, transplantation of rat myocardial microtissues into the pericardium of adult rats resulted in time-dependent integration of myocardial microtissues and co-alignment of implanted and host cardiomyocytes within 7 days. Myocardial microtissues and custom-shaped macrotissues produced by cellular self-assembly exemplify the potential of artificial tissue implants for regenerative medicine.
Resumo:
OBJECTIVE: Cellular Ca(2+) waves are understood as reaction-diffusion systems sustained by Ca(2+)-induced Ca(2+) release (CICR) from Ca(2+) stores. Given the recently discovered sensitization of Ca(2+) release channels (ryanodine receptors; RyRs) of the sarcoplasmic reticulum (SR) by luminal SR Ca(2+), waves could also be driven by RyR sensitization, mediated by SR overloading via Ca(2+) pump (SERCA), acting in tandem with CICR. METHODS: Confocal imaging of the Ca(2+) indicator fluo-3 was combined with UV-flash photolysis of caged compounds and the whole-cell configuration of the patch clamp technique to carry out these experiments in isolated guinea pig ventricular cardiomyocytes. RESULTS: Upon sudden slowing of the SERCA in cardiomyocytes with a photoreleased inhibitor, waves indeed decelerated immediately. No secondary changes of Ca(2+) signaling or SR Ca(2+) content due to SERCA inhibition were observed in the short time-frame of these experiments. CONCLUSIONS: Our findings are consistent with Ca(2+) loading resulting in a zone of RyR 'sensitization' traveling within the SR, but inconsistent with CICR as the predominant mechanism driving the Ca(2+) waves. This alternative mode of RyR activation is essential to fully conceptualize cardiac arrhythmias triggered by spontaneous Ca(2+) release.
Resumo:
Focal ectopic activity in cardiac tissue is a key factor in the initiation and perpetuation of tachyarrhythmias. Because myofibroblasts as present in fibrotic remodeled myocardia and infarct scars depolarize cardiomyocytes by heterocellular electrotonic interactions via gap junctions in vitro, we investigated using strands of cultured ventricular cardiomyocytes coated with myofibroblasts, whether this interaction might give rise to depolarization-induced abnormal automaticity. Whereas uncoated cardiomyocyte strands were invariably quiescent, myofibroblasts induced synchronized spontaneous activity in a density dependent manner. Activations appeared at spatial myofibroblast densities >15.7% and involved more than 80% of the preparations at myofibroblast densities of 50%. Spontaneous activity was based on depolarization-induced automaticity as evidenced by: (1) suppression of activity by the sarcolemmal K(ATP) channel opener P-1075; (2) induction of activity in current-clamped single cardiomyocytes undergoing depolarization to potentials similar to those induced by myofibroblasts in cardiomyocyte strands; and (3) induction of spontaneous activity in cardiomyocyte strands coated with connexin 43 transfected Hela cells but not with communication deficient HeLa wild-type cells. Apart from unveiling the mechanism underlying the hallmark of monolayer cultures of cardiomyocytes, ie, spontaneous electromechanical activity, these findings open the perspective that myofibroblasts present in structurally remodeled myocardia following pressure overload and infarction might contribute to arrhythmogenesis by induction of ectopic activity.
Resumo:
Previous studies have shown that the gating kinetics of the slow component of the delayed rectifier K(+) current (I(Ks)) contribute to postrepolarization refractoriness in isolated cardiomyocytes. However, the impact of such kinetics on arrhythmogenesis remains unknown. We surmised that expression of I(Ks) in rat cardiomyocyte monolayers contributes to wavebreak formation and facilitates fibrillatory conduction by promoting postrepolarization refractoriness. Optical mapping was performed in 44 rat ventricular myocyte monolayers infected with an adenovirus carrying the genomic sequences of KvLQT1 and minK (molecular correlates of I(Ks)) and 41 littermate controls infected with a GFP adenovirus. Repetitive bipolar stimulation was applied at increasing frequencies, starting at 1 Hz until loss of 1:1 capture or initiation of reentry. Action potential duration (APD) was significantly shorter in I(Ks)-infected monolayers than in controls at 1 to 3 Hz (P<0.05), whereas differences at higher pacing frequencies did not reach statistical significance. Stable rotors occurred in both groups, with significantly higher rotation frequencies, lower conduction velocities, and shorter action potentials in the I(Ks) group. Wavelengths in the latter were significantly shorter than in controls at all rotation frequencies. Wavebreaks leading to fibrillatory conduction occurred in 45% of the I(Ks) reentry episodes but in none of the controls. Moreover, the density of wavebreaks increased with time as long as a stable source sustained the fibrillatory activity. These results provide the first demonstration that I(Ks)-mediated postrepolarization refractoriness can promote wavebreak formation and fibrillatory conduction during pacing and sustained reentry and may have important implications in tachyarrhythmias.
Resumo:
AIMS: Cardiac myopathies are the second leading cause of death in patients with Duchenne and Becker muscular dystrophy, the two most common and severe forms of a disabling striated muscle disease. Although the genetic defect has been identified as mutations of the dystrophin gene, very little is known about the molecular and cellular events leading to progressive cardiac muscle damage. Dystrophin is a protein linking the cytoskeleton to a complex of transmembrane proteins that interact with the extracellular matrix. The fragility of the cell membrane resulting from the lack of dystrophin is thought to cause an excessive susceptibility to mechanical stress. Here, we examined cellular mechanisms linking the initial membrane damage to the dysfunction of dystrophic heart. METHODS AND RESULTS: Cardiac ventricular myocytes were enzymatically isolated from 5- to 9-month-old dystrophic mdx and wild-type (WT) mice. Cells were exposed to mechanical stress, applied as osmotic shock. Stress-induced cytosolic and mitochondrial Ca(2+) signals, production of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored with confocal microscopy and fluorescent indicators. Pharmacological tools were used to scavenge ROS and to identify their possible sources. Osmotic shock triggered excessive cytosolic Ca(2+) signals, often lasting for several minutes, in 82% of mdx cells. In contrast, only 47% of the WT cardiomyocytes responded with transient and moderate intracellular Ca(2+) signals. On average, the reaction was 6-fold larger in mdx cells. Removal of extracellular Ca(2+) abolished these responses, implicating Ca(2+) influx as a trigger for abnormal Ca(2+) signalling. Our further experiments revealed that osmotic stress in mdx cells produced an increase in ROS production and mitochondrial Ca(2+) overload. The latter was followed by collapse of the mitochondrial membrane potential, an early sign of cell death. CONCLUSION: Overall, our findings reveal that excessive intracellular Ca(2+) signals and ROS generation link the initial sarcolemmal injury to mitochondrial dysfunctions. The latter possibly contribute to the loss of functional cardiac myocytes and heart failure in dystrophy. Understanding the sequence of events of dystrophic cell damage and the deleterious amplification systems involved, including several positive feed-back loops, may allow for a rational development of novel therapeutic strategies.
Resumo:
The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.
Resumo:
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
Resumo:
Myocardial tissue engineering aims to repair, replace, and regenerate damaged cardiac tissue using tissue constructs created ex vivo. This approach may one day provide a full treatment for several cardiac disorders, including congenital diseases or ventricular dysfunction after myocardial infarction. Although the ex vivo construction of a myocardium-like tissue is faced with many challenges, it is nevertheless a pressing objective for cardiac reparative medicine. Multidisciplinary efforts have already led to the development of promising viable muscle constructs. In this article, we review the various concepts of cardiac tissue engineering and their specific challenges. We also review the different types of existing biografts and their physiological relevance. Although many investigators have favored cardiomyocytes, we discuss the potential of other clinically relevant cells, as well as the various hypotheses proposed to explain the functional benefit of cell transplantation.
Resumo:
Paclitaxel (Taxol) has been successfully combined with the monoclonal antibody trastuzumab (Herceptin) in the treatment of ErbB2 overexpressing cancers. However, this combination therapy showed an unexpected synergistic increase in cardiac dysfunction. We have studied the mechanisms of paclitaxel/anti-ErbB2 cardiotoxicity in adult rat ventricular myocytes (ARVM). Myofibrillar organization was assessed by immunofluorescence microscopy and cell viability was tested by the TUNEL-, LDH- and MTT-assay. Oxidative stress was measured by DCF-fluorescence and myocyte contractile function by video edge-detection and fura-2 fluorescence. Treatment of ARVM with paclitaxel or antibodies to ErbB2 caused a significant increase in myofilament degradation, similarly as observed with an inhibitor of MAPK-signaling, but not apoptosis, necrosis or changes in mitochondrial activity. Paclitaxel-treatment and anti-ErbB2 reduced Erk1/2 phosphorylation. Paclitaxel increased diastolic calcium, shortened relaxation time and reduced fractional shortening in combination with anti-ErbB2. A minor increase in oxidative stress by paclitaxel or anti-ErbB2 was found. We conclude, that concomitant inhibition of ErbB2 receptors and paclitaxel treatment has an additive worsening effect on adult cardiomyocytes, mainly discernible in changes of myofibrillar structure and function, but in the absence of cell death. A potential mechanism is the modulation of the MAPK/Erk1/2 signaling by both drugs.
Resumo:
Evidence from epidemiological studies indicates that acute exposure to airborne pollutants is associated with an increased risk of morbidity and mortality attributed to cardiovascular diseases. The present study investigated the effects of combustion-derived ultrafine particles (diesel exhaust particles) as well as engineered nanoparticles (titanium dioxide and single-walled carbon nanotubes) on impulse conduction characteristics, myofibrillar structure and the formation of reactive oxygen species in patterned growth strands of neonatal rat ventricular cardiomyocytes in vitro. Diesel exhaust particles as well as titanium dioxide nanoparticles showed the most pronounced effects. We observed a dose-dependent change in heart cell function, an increase in reactive oxygen species and, for titanium dioxide, we also found a less organized myofibrillar structure. The mildest effects were observed for single-walled carbon nanotubes, for which no clear dose-dependent alterations of theta and dV/dt(max) could be determined. In addition, there was no increase in oxidative stress and no change in the myofibrillar structure. These results suggest that diesel exhaust as well as titanium dioxide particles and to a lesser extent also single-walled carbon nanotubes can directly induce cardiac cell damage and can affect the function of the cells.
Resumo:
Introduction: Slow conduction and ectopic activity are key elements of cardiac arrhythmogenesis. Both anomalies can be caused by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. Because MFBs are characterized by the expression of {alpha}-smooth muscle actin ({alpha}-SMA) containing stress fibers, we investigated whether pharmacological interference with stress fiber formation might affect myofibroblast arrhythmogenicity. Methods: Experiments were done with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage sensitive dyes. Electrophysiological characteristics of single MFBs were assessed using patch clamp techniques. Actin polymerization was inhibited by latrunculin B (LtB). Data are given as mean±S.D. (n=5 to 22). Results: As assessed by immunocytochemistry, exposure of MFBs to LtB (0.3–10 µmol/L) profoundly disrupted stress fiber formation. This led, within minutes, to a dramatic change in cell morphology with MFBs assuming an astrocyte-like shape. In pure cardiomyocyte preparations, LtB had negligible effects on impulse conduction velocity ({theta}) and maximal action potential upstroke velocities (dV/dtmax). In contrast, LtB applied to MFB coated cardiomyocyte strands substantially increased {theta} from 247±32 to 371±26 mm/s and dV/dtmax from 40±7 to 81±1 %APA/ms, i.e., to values similar to those of pure cardiomyocyte strands (342±13 mm/s; 82±1 %APA/ms). Moreover, LtB at 1 µmol/L completely abolished MFB induced ectopic activity. LtB induced normalization of electrophysiologic parameters can be explained by the finding that LtB hyperpolarized MFBs from –25 mV to –50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause slow conduction and ectopic activity. Conclusions: Pharmacological interference with the cytoskeleton of cardiac MFBs alters their electrophysiological phenotype to such an extent that detrimental effects on cardiomyocyte electrophysiology are completely abolished. This observation might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs.
Resumo:
Background: Slow conduction and ectopic activity are major determinants of cardiac arrhythmogenesis. Both of these conditions can be elicited by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. MFBs appear during structural remodeling of the heart and are characterized by the expression of α-smooth muscle actin (α-SMA) containing stress fibers. In this study, we investigated whether pharmacological interference with the actin cytoskeleton affects myofibroblast arrhythmogeneicity. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse conduction velocity (θ) and maximal upstroke velocities of propagated action potentials (dV/dtmax), expressed as % action potential amplitude change (%APA) per ms, were measured optically using voltage sensitive dyes. Actin was destabilized by latrunculin B (LtB) and cytochalasin D and stabilized with jasplakinolide. Data are given as mean ± S.D. (n = 5-22). Single cell electrophysiology was assessed using standard patch-clamp techniques. Results: As revealed by immunocytochemistry, exposure of MFBs to LtB (0.01-10 μmol/L) profoundly disrupted stress fibers which led to drastic changes in cell morphology with MFBs assuming an astrocyte-like shape. In control cardiomyocyte strands (no MFB coat), LtB had negligible effects on θ and dV/dtmax. In contrast, LtB applied to MFB-coated strands increased θ dose-dependently from 197 ± 35 mm/s to 344 ± 26 mm/s and dV/dtmax from 38 ± 5 to 78 ± 3% APA/ms, i.e., to values virtually identical to those of cardiomyocyte control strands (339 ± 24 mm/s; 77 ± 3% APA/ms). Highly similar results were obtained when exposing the preparations to cytochalasin D. In contrast, stabilization of actin with increasing concentrations of jasplakinolide exerted no significant effects on impulse conduction characteristics in MFB-coated strands. Whole-cell patch-clamp experiments showed that LtB hyperpolarized MFBs from -25 mV to -50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause arrhythmogenic slow conduction and ectopic activity. Conclusion: Pharmacological interference with the actin cytoskeleton of cardiac MFBs affects their electrophysiological phenotype to such an extent that they loose their detrimental effects on cardiomyocyte electrophysiology. This result might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs.
Resumo:
The expression pattern of angiotensin AT2 receptors with predominance during fetal life and upregulation under pathological conditions during tissue injury/repair process suggests that AT2 receptors may exert an important action in injury/repair adaptive mechanisms. Less is known about AT2 receptors in acute ischemia-induced cardiac injury. We aimed here to elucidate the role of AT2 receptors after acute myocardial infarction. Double immunofluorescence staining showed that cardiac AT2 receptors were mainly detected in clusters of small c-kit+ cells accumulating in peri-infarct zone and c-kit+AT2+ cells increased in response to acute cardiac injury. Further, we isolated cardiac c-kit+AT2+ cell population by modified magnetic activated cell sorting and fluorescence activated cell sorting. These cardiac c-kit+AT2+ cells, represented approximately 0.19% of total cardiac cells in infarcted heart, were characterized by upregulated transcription factors implicated in cardiogenic differentiation (Gata-4, Notch-2, Nkx-2.5) and genes required for self-renewal (Tbx-3, c-Myc, Akt). When adult cardiomyocytes and cardiac c-kit+AT2+ cells isolated from infarcted rat hearts were cocultured, AT2 receptor stimulation in vitro inhibited apoptosis of these cocultured cardiomyocytes. Moreover, in vivo AT2 receptor stimulation led to an increased c-kit+AT2+ cell population in the infarcted myocardium and reduced apoptosis of cardiomyocytes in rats with acute myocardial infarction. These data suggest that cardiac c-kit+AT2+ cell population exists and increases after acute ischemic injury. AT2 receptor activation supports performance of cardiomyocytes, thus contributing to cardioprotection via cardiac c-kit+AT2+ cell population.
Resumo:
The development of a high-density active microelectrode array for in vitro electrophysiology is reported. Based on the Active Pixel Sensor (APS) concept, the array integrates 4096 gold microelectrodes (electrode separation 20 microm) on a surface of 2.5 mmx2.5 mm as well as a high-speed random addressing logic allowing the sequential selection of the measuring pixels. Following the electrical characterization in a phosphate solution, the functional evaluation has been carried out by recording the spontaneous electrical activity of neonatal rat cardiomyocytes. Signals with amplitudes from 130 microVp-p to 300 microVp-p could be recorded from different pixels. The results demonstrate the suitability of the APS concept for developing a new generation of high-resolution extracellular recording devices for in vitro electrophysiology.