149 resultados para cardiac arrhythmia
Resumo:
Fetal echocardiography was initially used to diagnose structural heart disease, but recent interest has focused on functional assessment. Effects of extracardiac conditions on the cardiac function such as volume overload (in the recipient in twin-twin transfusion syndrome), a hyperdynamic circulation (arterio-venous malformation), cardiac compression (diaphragmatic hernia, lung tumours) and increased placental resistance (intrauterine growth restriction and placental insufficiency) can be studied by ultrasound and may guide decisions for intervention or delivery. A variety of functional tests can be used, but there is no single clinical standard. For some specific conditions, however, certain tests have shown diagnostic value.
Resumo:
A low simplified Pulmonary Embolism Severity Index (sPESI), defined as age ≤80 years and absence of systemic hypotension, tachycardia, hypoxia, cancer, heart failure, and lung disease, identifies low-risk patients with acute pulmonary embolism (PE). It is unknown whether cardiac troponin testing improves the prediction of clinical outcomes if the sPESI is not low. In the prospective Swiss Venous Thromboembolism Registry, 369 patients with acute PE and a troponin test (conventional troponin T or I, highly sensitive troponin T) were enrolled from 18 hospitals. A positive test result was defined as a troponin level above the manufacturers assay threshold. Among the 106 (29%) patients with low sPESI, the rate of mortality or PE recurrence at 30 days was 1.0%. Among the 263 (71%) patients with high sPESI, 177 (67%) were troponin-negative and 86 (33%) troponin-positive; the rate of mortality or PE recurrence at 30 days was 4.6% vs. 12.8% (p=0.015), respectively. Overall, risk assessment with a troponin test (hazard ratio [HR] 3.39, 95% confidence interval [CI] 1.38-8.37; p=0.008) maintained its prognostic value for mortality or PE recurrence when adjusted for sPESI (HR 5.80, 95%CI 0.76-44.10; p=0.09). The combination of sPESI with a troponin test resulted in a greater area under the receiver-operating characteristic curve (HR 0.72, 95% CI 0.63-0.81) than sPESI alone (HR 0.63, 95% CI 0.57-0.68) (p=0.023). In conclusion, although cardiac troponin testing may not be required in patients with a low sPESI, it adds prognostic value for early death and recurrence for patients with a high sPESI.
Resumo:
The influence of positioning and geometry of ventricular cannulas for contemporary continuous flow Left Ventricular Assist Devices (LVADs) was evaluated in a non-beating isolated heart preparation with borescopic visualization. Preload and LVAD flow were varied to evaluate degrees of ventricular decompression up to the point of ventricular collapse. The performance of a flanged cannula was compared to a conventional bevel-tipped cannula: quantitatively by the maximal flow attainable, and qualitatively by visualization of fluid tracer particles within the ventricular chamber. Three forms of ventricular suck-down occurred: concentric collapse, gradual entrainment and instantaneous entrainment. In some circumstances, unstable oscillations of the ventricle were observed prior to complete collapse. Under conditions of low preload, the flanged cannula demonstrated less positional sensitivity, provided greater flow, and exhibited fewer areas of stagnation than the beveled cannula. These observations warrant further consideration of a flanged ventricular cannula to mitigate complications encountered with conventional cannulae.
Resumo:
The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.
Resumo:
The cardiac sodium channel Na(v)1.5 plays a key role in excitability and conduction. The 3 last residues of Na(v)1.5 (Ser-Ile-Val) constitute a PDZ-domain binding motif that interacts with the syntrophin-dystrophin complex. As dystrophin is absent at the intercalated discs, Na(v)1.5 could potentially interact with other, yet unknown, proteins at this site.
Resumo:
Duchenne muscular dystrophy (DMD) is a severe striated muscle disease due to the absence of dystrophin. Dystrophin deficiency results in dysfunctional sodium channels and conduction abnormalities in hearts of mdx mice. Disease progression in the mdx mouse only modestly reflects that of DMD patients, possibly due to utrophin up-regulation. Here, we investigated mice deficient in both dystrophin and utrophin [double knockout (DKO)] to assess the role of utrophin in the regulation of the cardiac sodium channel (Na(v)1.5) in mdx mice.
Resumo:
Minimally invasive or virtual autopsies are being advocated as alternative to traditional autopsy, but have limited abilities to detect coronary artery disease. It was the objective of this study to assess if the occurrence of chemical shift artifacts (CSA) along the coronary arteries on non-contrast, post-mortem cardiac MR may be used to investigate coronary artery disease.
Resumo:
Insufficient cardiac preload and impaired contractility are frequent in early sepsis. We explored the effects of acute cardiac preload reduction and dobutamine on hepatic arterial (Qha) and portal venous (Qpv) blood flows during endotoxin infusion. We hypothesized that the hepatic arterial buffer response (HABR) is absent during preload reduction and reduced by dobutamine. In anesthetized pigs, endotoxin or vehicle (n = 12, each) was randomly infused for 18 h. HABR was tested sequentially by constricting superior mesenteric artery (SMA) or inferior vena cava (IVC). Afterward, dobutamine at 2.5, 5.0, and 10.0 μg/kg per minute or another vehicle (n = 6, each) was randomly administered in endotoxemic and control animals, and SMA was constricted during each dose. Systemic (cardiac output, thermodilution) and carotid, splanchnic, and renal blood flows (ultrasound Doppler) and blood pressures were measured before and during administration of each dobutamine dose. HABR was expressed as hepatic arterial pressure/flow ratio. Compared with controls, 18 h of endotoxin infusion was associated with decreased mean arterial blood pressure [49 ± 11 mmHg vs. 58 ± 8 mmHg (mean ± SD); P = 0.034], decreased renal blood flow, metabolic acidosis, and impaired HABR during SMA constriction [0.32 (0.18-1.32) mmHg/ml vs. 0.22 (0.08-0.60) mmHg/ml; P = 0.043]. IVC constriction resulted in decreased Qpv in both groups; whereas Qha remained unchanged in controls, it decreased after 18 h of endotoxemia (P = 0.031; constriction-time-group interaction). One control and four endotoxemic animals died during the subsequent 6 h. The maximal increase of cardiac output during dobutamine infusion was 47% (22-134%) in controls vs. 53% (37-85%) in endotoxemic animals. The maximal Qpv increase was significant only in controls [24% (12-47%) of baseline (P = 0.043) vs. 17% (-7-32%) in endotoxemia (P = 0.109)]. Dobutamine influenced neither Qha nor HABR. Our data suggest that acute cardiac preload reduction is associated with preferential hepatic arterial perfusion initially but not after established endotoxemia. Dobutamine had no effect on the HABR.
Resumo:
This work was motivated by the incomplete characterization of the role of vascular endothelial growth factor-A (VEGF-A) in the stressed heart in consideration of upcoming cancer treatment options challenging the natural VEGF balance in the myocardium. We tested, if the cytotoxic cancer therapy doxorubicin (Doxo) or the anti-angiogenic therapy sunitinib alters viability and VEGF signaling in primary cardiac microvascular endothelial cells (CMEC) and adult rat ventricular myocytes (ARVM). ARVM were isolated and cultured in serum-free medium. CMEC were isolated from the left ventricle and used in the second passage. Viability was measured by LDH-release and by MTT-assay, cellular respiration by high-resolution oxymetry. VEGF-A release was measured using a rat specific VEGF-A ELISA-kit. CMEC were characterized by marker proteins including CD31, von Willebrand factor, smooth muscle actin and desmin. Both Doxo and sunitinib led to a dose-dependent reduction of cell viability. Sunitinib treatment caused a significant reduction of complex I and II-dependent respiration in cardiomyocytes and the loss of mitochondrial membrane potential in CMEC. Endothelial cells up-regulated VEGF-A release after peroxide or Doxo treatment. Doxo induced HIF-1α stabilization and upregulation at clinically relevant concentrations of the cancer therapy. VEGF-A release was abrogated by the inhibition of the Erk1/2 or the MAPKp38 pathway. ARVM did not answer to Doxo-induced stress conditions by the release of VEGF-A as observed in CMEC. VEGF receptor 2 amounts were reduced by Doxo and by sunitinib in a dose-dependent manner in both CMEC and ARVM. In conclusion, these data suggest that cancer therapy with anthracyclines modulates VEGF-A release and its cellular receptors in CMEC and ARVM, and therefore alters paracrine signaling in the myocardium.
Resumo:
PURPOSE: To determine the incidence of and risk factors for adverse cardiac events during catecholamine vasopressor therapy in surgical intensive care unit patients with cardiovascular failure. METHODS: The occurrence of any of seven predefined adverse cardiac events (prolonged elevated heart rate, tachyarrhythmia, myocardial cell damage, acute cardiac arrest or death, pulmonary hypertension-induced right heart dysfunction, reduction of systemic blood flow) was prospectively recorded during catecholamine vasopressor therapy lasting at least 12 h. RESULTS: Fifty-four of 112 study patients developed a total of 114 adverse cardiac events, an incidence of 48.2 % (95 % CI, 38.8-57.6 %). New-onset tachyarrhythmia (49.1 %), prolonged elevated heart rate (23.7 %), and myocardial cell damage (17.5 %) occurred most frequently. Aside from chronic liver diseases, factors independently associated with the occurrence of adverse cardiac events included need for renal replacement therapy, disease severity (assessed by the Simplified Acute Physiology Score II), number of catecholamine vasopressors (OR, 1.73; 95 % CI, 1.08-2.77; p = 0.02) and duration of catecholamine vasopressor therapy (OR, 1.01; 95 % CI, 1-1.01; p = 0.002). Patients developing adverse cardiac events were on catecholamine vasopressors (p < 0.001) and mechanical ventilation (p < 0.001) for longer and had longer intensive care unit stays (p < 0.001) and greater mortality (25.9 vs. 1.7 %; p < 0.001) than patients who did not. CONCLUSIONS: Adverse cardiac events occurred in 48.2 % of surgical intensive care unit patients with cardiovascular failure and were related to morbidity and mortality. The extent and duration of catecholamine vasopressor therapy were independently associated with and may contribute to the pathogenesis of adverse cardiac events.