84 resultados para cancer-cells
Resumo:
Prostate cancer is the most common cancer among men in industrialised countries. Most patients with prostate cancer, however, will not die of it. As a result, many of them will experience symptomatic metastasis during the course of the disease. Prostate cancer has a high propensity to metastasize to bone. Unlike many other cancers prostate cancer cells induce a rather osteosclerotic than osteolytic reaction in the bone marrow by interfering with physiological bone remodelling. A proper understanding of the mechanisms of tumour cell-induced bone alterations and exaggerated bone deposition in prostate cancer may open new and urgently needed therapeutic approaches in the field of palliative care for affected patients. In this review we focus on the central role of two major regulators of bone mass, the wingless type integration site family members (WNTs) and the bone morphogenetic proteins (BMPs), in the development of osteosclerotic bone metastases.
Resumo:
Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1 alpha (CCL3), MIP-1 beta (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1 alpha and MIP-1 beta degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu(58) to Trp(59) bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1 beta hybrids indicated that processing of MIP-1 beta might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1 alpha, MIP-1 beta, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes.
Resumo:
MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.
Resumo:
Prostate cancer is a major health concern as it has the second highest incidence rate among cancers in men. Despite progress in tumor diagnostics and therapeutic approaches, prognosis for men with advanced disease remains poor. In this review we provide insight into the changes of the intermediary metabolism in normal prostate and prostate cancer. In contrast to normal cells, prostate cancer cells are reprogrammed for optimal energy-efficiency with a functional Krebs cycle and minimal apoptosis rates. A key element in this relationship is the uniquely high zinc level of normal prostate epithelial cells. Zinc is transported by the SLC30 and SLC39 families of zinc transporters. However, in prostate cancer the intracellular zinc content is remarkably reduced and expression levels of certain zinc transporters are altered. Here, we summarize the role of different zinc transporters in the development of prostate cancer.
Resumo:
During tumor progression cells acquire an altered metabolism, either as a cause or as a consequence of an increased need of energy and nutrients. All four major classes of macromolecules are affected: carbohydrates, proteins, lipids and nucleic acids. As a result of the changed needs, solute carriers (SLCs) which are the major transporters of these molecules are differently expressed. This renders them important targets in the treatment of cancer. Blocking or activating SLCs is one possible therapeutic strategy. For example, some SLCs are upregulated in tumor cells due to the increased demand for energy and nutritional needs. Thus, blocking them and turning off the delivery of fuel or nutrients could be one way to interfere with tumor progression. Specific drug delivery to cancer cells via transporters is another approach. Some SLCs are also interesting as chemosensitizing targets because blocking or activating them may result in an altered response to chemotherapy. In this review we summarize the roles of SLCs in cancer therapy and specifically their potential as direct or indirect targets, as drug carriers or as chemosensitizing targets.
Resumo:
The CCND1 gene encodes the protein CyclinD1, which is an important promoter of the cell cycle and a prognostic and predictive factor in different cancers. CCND1 is amplified to a substantial proportion in various tumors, and this may contribute to CyclinD1 overexpression. In bladder cancer, information about the clinical relevance of CCND1/CyclinD1 alterations is limited. In the present study, amplification status of CCND1 and expression of CyclinD1 were evaluated by fluorescence in situ hybridization and immunohistochemistry on tissue microarrays from 152 lymph node-positive urothelial bladder cancers (one sample each from the center and invasion front of the primary tumors, two samples per corresponding lymph node metastasis) treated by cystectomy and lymphadenectomy. CCND1 amplification status and the percentage of immunostained cancer cells were correlated with histopathological tumor characteristics, cancer-specific survival and response to adjuvant chemotherapy. CCND1 amplification in primary tumors was homogeneous in 15% and heterogeneous in 6% (metastases: 22 and 2%). Median nuclear CyclinD1 expression in amplified samples was similar in all tumor compartments (60-70% immunostained tumor nuclei) and significantly higher than in non-amplified samples (5-20% immunostained tumor nuclei; P<0.05). CCND1 status and CyclinD1 expression were not associated with primary tumor stage or lymph node tumor burden. CCND1 amplification in primary tumors (P=0.001) and metastases (P=0.02) and high nuclear CyclinD1 in metastases (P=0.01) predicted early cancer-related death independently. Subgroup analyses showed that chemotherapy was particularly beneficial in patients with high nuclear CyclinD1 expression in the metastases, whereas expression in primary tumors and CCND1 status did not predict chemotherapeutic response. In conclusion, CCND1 amplification status and CyclinD1 expression are independent risk factors in metastasizing bladder cancer. High nuclear CyclinD1 expression in lymph node metastases predicts favorable response to chemotherapy. This information may help to personalize prognostication and administration of adjuvant chemotherapy.
Resumo:
PURPOSE High aldehyde dehydrogenase (ALDH) has been suggested to selectively mark cells with high tumorigenic potential in established prostate cancer cell lines. However, the existence of cells with high ALDH activity (ALDH(bright)) in primary prostate cancer specimens has not been shown so far. We investigated the presence, phenotype, and clinical significance of ALDH(bright) populations in clinical prostate cancer specimens. EXPERIMENTAL DESIGN We used ALDEFLUOR technology and fluorescence-activated cell-sorting (FACS) staining to identify and characterize ALDH(bright) populations in cells freshly isolated from clinical prostate cancer specimens. Expression of genes encoding ALDH-specific isoforms was evaluated by quantitative real-time PCR in normal prostate, benign prostatic hyperplasia (BPH), and prostate cancer tissues. ALDH1A1-specific expression and prognostic significance were assessed by staining two tissue microarrays that included more than 500 samples of BPH, prostatic intraepithelial neoplasia (PIN), and multistage prostate cancer. RESULTS ALDH(bright) cells were detectable in freshly excised prostate cancer specimens (n = 39) and were mainly included within the EpCAM((+)) and Trop2((+)) cell populations. Although several ALDH isoforms were expressed to high extents in prostate cancer, only ALDH1A1 gene expression significantly correlated with ALDH activity (P < 0.01) and was increased in cancers with high Gleason scores (P = 0.03). Most importantly, ALDH1A1 protein was expressed significantly more frequently and at higher levels in advanced-stage than in low-stage prostate cancer and BPH. Notably, ALDH1A1 positivity was associated with poor survival (P = 0.02) in hormone-naïve patients. CONCLUSIONS Our data indicate that ALDH contributes to the identification of subsets of prostate cancer cells of potentially high clinical relevance.
Resumo:
The immune system is able to specifically target antigen-expressing cancer cells. The promise of immunotherapy was to eliminate cancer cells without harming normal tissue and, therefore, with no or very few side effects. Immunotherapy approaches have, for several decades, been tested against several tumours, most often against malignant melanoma. However, although detectable immune responses have regularly been induced, the clinical outcome has often been disappointing. The development of molecular methods and an improved understanding of tumour immunosurveillance led to novel immunotherapy approaches in the last few years. First randomised phase III trials proved that immunotherapy can prolong survival of patients with metastatic melanoma or prostate cancer. The development in the field is very rapid and various molecules (mainly monoclonal antibodies) that activate the immune system are currently being tested in clinical trials and will possibly change our treatment of cancer. The ultimate goal of any cancer therapy and also immunotherapy is to cure cancer. However, this depends on the elimination of the disease originating cancer stem cells. Unfortunately, cancer stem cells seem resistant to most available treatment options. Recent developments in immunotherapy may allow targeting these cancer stem cells specifically in the future. In this review, we summarise the current state of immunotherapy in clinical routine and the expected developments in the near future.
Resumo:
PURPOSE Neural invasion (NI) is a histopathologic feature of colon cancer that receives little consideration. Therefore, we conducted a morphologic and functional characterization of NI in colon cancer. EXPERIMENTAL DESIGN NI was investigated in 673 patients with colon cancer. Localization and severity of NI was determined and related to patient's prognosis and survival. The neuro-affinity of colon cancer cells (HT29, HCT-116, SW620, and DLD-1) was compared with pancreatic cancer (T3M4 and SU86.86) and rectal cancer cells (CMT-93) in the in vitro three-dimensional (3D)-neural-migration assay and analyzed via live-cell imaging. Immunoreactivity of the neuroplasticity marker GAP-43, and the neurotrophic-chemoattractant factors Artemin and nerve growth factor (NGF), was quantified in colon cancer and pancreatic cancer nerves. Dorsal root ganglia of newborn rats were exposed to supernatants of colon cancer, rectal cancer, and pancreatic cancer cells and neurite density was determined. RESULTS NI was detected in 210 of 673 patients (31.2%). Although increasing NI severity scores were associated with a significantly poorer survival, presence of NI was not an independent prognostic factor in colon cancer. In the 3D migration assay, colon cancer and rectal cancer cells showed much less neurite-targeted migration when compared with pancreatic cancer cells. Supernatants of pancreatic cancer and rectal cancer cells induced a much higher neurite density than those of colon cancer cells. Accordingly, NGF, Artemin, and GAP-43 were much more pronounced in nerves in pancreatic cancer than in colon cancer. CONCLUSION NI is not an independent prognostic factor in colon cancer. The lack of a considerable biologic affinity between colon cancer cells and neurons, the low expression profile of colonic nerves for chemoattractant molecules, and the absence of a major neuroplasticity in colon cancer may explain the low prevalence and impact of NI in colon cancer.
Resumo:
UNLABELLED The gastrin-releasing peptide receptor (GRPr) is overexpressed in prostate cancer and is an attractive target for radionuclide therapy. In addition, inhibition of the protein kinase mammalian target of rapamycin (mTOR) has been shown to sensitize various cancer cells to the effects of radiotherapy. METHODS To determine the effect of treatment with rapamycin and radiotherapy with a novel (177)Lu-labeled GRPr antagonist ((177)Lu-RM2, BAY 1017858) alone and in combination, in vitro and in vivo studies were performed using the human PC-3 prostate cancer cell line. PC-3 cell proliferation and (177)Lu-RM2 uptake after treatment with rapamycin were assessed in vitro. To determine the influence of rapamycin on (177)Lu-RM2 tumor uptake, in vivo small-animal PET studies with (68)Ga-RM2 were performed after treatment with rapamycin. To study the efficacy of (177)Lu-RM2 in vivo, mice with subcutaneous PC-3 tumors were treated with (177)Lu-RM2 alone or after pretreatment with rapamycin. RESULTS Stable expression of GRPr was maintained after rapamycin treatment with doses up to 4 mg/kg in vivo. Monotherapy with (177)Lu-RM2 at higher doses (72 and 144 MBq) was effective in inducing complete tumor remission in 60% of treated mice. Treatment with 37 MBq of (177)Lu-RM2 and rapamycin in combination led to significantly longer survival than with either agent alone. No treatment-related toxicity was observed. CONCLUSION Radiotherapy using a (177)Lu-labeled GRPr antagonist alone or in combination with rapamycin was efficacious in inhibiting in vivo tumor growth and may be a promising strategy for treatment of prostate cancer.
Resumo:
Background and Purpose Ceramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental Approach The breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key Results In both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and Implications Our data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.
Resumo:
PURPOSE To assess whether Bcl-2, an inhibitor of the apoptotic cascade, can predict response to neoadjuvant chemotherapy in patients with urothelial cancer of the bladder (UCB). METHODS Bcl-2 expression was analyzed in 2 different tissue microarrays (TMAs). One TMA was constructed of primary tumors and their corresponding lymph node (LN) metastases from 152 patients with chemotherapy-naive UCB treated by cystectomy and pelvic lymphadenectomy (chemotherapy-naive TMA cohort). The other TMA was constructed of tumor samples obtained from 55 patients with UCB before neoadjuvant chemotherapy (transurethral resection of the bladder cancer) and after cystectomy with pelvic lymphadenectomy (residual primary tumor [ypT+], n = 38); residual LN metastases [ypN+], n = 24) (prechemotherapy/postchemotherapy TMA cohort). Bcl-2 overexpression was defined as 10% or more cancer cells showing cytoplasmic immunoreactivity. RESULTS In both TMA cohorts, Bcl-2 overexpression was significantly (P<0.05) more frequent in LN metastases than in primary tumors (chemotherapy-naive TMA group: 18/148 [12%] in primary tumors vs. 39/143 [27%] in metastases; postchemotherapy TMA: ypT+7/35 [20%] vs. ypN+11/19 [58%]). In the neoadjuvant setting, patients with Bcl-2 overexpression in transurethral resection of the bladder cancer specimens showed significantly (P = 0.04) higher ypT stages and less regression in their cystectomy specimens than did the control group, and only one-eighth (13%) had complete tumor regression (ypT0 ypN0). In survival analyses, only histopathological parameters added significant prognostic information. CONCLUSIONS Bcl-2 overexpression in chemotherapy-naive primary bladder cancer is related to poor chemotherapy response and might help to select likely nonresponders.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
Several studies have linked overexpression of the LIM and SH3 domain protein 1 (LASP1) to progression of breast, colon, liver, and bladder cancer. However, its expression pattern and role in human prostate cancer (PCa) remained largely undefined. Analysis of published microarray data revealed a significant overexpression of LASP1 in PCa metastases compared to parental primary tumors and normal prostate epithelial cells. Subsequent gene-set enrichment analysis comparing LASP1-high and -low PCa identified an association of LASP1 with genes involved in locomotory behavior and chemokine signaling. These bioinformatic predictions were confirmed in vitro as the inducible short hairpin RNA-mediated LASP1 knockdown impaired migration and proliferation in LNCaP prostate cancer cells. By immunohistochemical staining and semi-quantitative image analysis of whole tissue sections we found an enhanced expression of LASP1 in primary PCa and lymph node metastases over benign prostatic hyperplasia. Strong cytosolic and nuclear LASP1 immunoreactivity correlated with PSA progression. Conversely, qRT-PCR analyses for mir-203, which is a known translational suppressor of LASP1 in matched RNA samples revealed an inverse correlation of LASP1 protein and mir-203 expression. Collectively, our results suggest that loss of mir-203 expression and thus uncontrolled LASP1 overexpression might drive progression of PCa.
Resumo:
BACKGROUND: The understanding of molecular mechanisms leading to poor prognosis in pancreatic cancer may help develop treatment options. N-myc downstream-regulated gene-1 (NDRG1) has been correlated to better prognosis in pancreatic cancer. Therefore, we thought to analyze how the loss of NDRG1 affects progression in an orthotopic xenograft animal model of recurrence. METHODS: Capan-1 cells were silenced for NDRG1 (C(sil)) or transfected with scrambled shRNA (C(scr)) and compared for anchorage-dependent and anchorage-independent growth, invasion and tube formation in vitro. In an orthotopic xenograft model of recurrence tumors were grown in the pancreatic tail. The effect of NDRG1 silencing was evaluated on tumor size and metastasis. RESULTS: The silencing of NDRG1 in Capan-1 cells leads to more aggressive tumor growth and metastasis. We found faster cell growth, double count of invaded cells and 1.8-fold increase in tube formation in vitro. In vivo local tumors were 5.9-fold larger (p = 0.006) and the number of metastases was higher in animals with tumors silenced for NDRG1 primarily (3 vs. 1.1; p = 0.005) and at recurrence (3.3 vs. 0.9; p = 0.015). CONCLUSION: NDRG1 may be an interesting therapeutic target as its silencing in human pancreatic cancer cells leads to a phenotype with more aggressive tumor growth and metastasis.