97 resultados para bloqueio femoral


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study investigates by means of a new bone-prosthesis interface motion detector whether conceptual design differences of femoral stems are reflected in their primary stability pattern. DESIGN: An in vitro experiment using a biaxial materials testing machine in combination with three-dimensional motion measurement devices was performed. BACKGROUND: Primary stability of uncemented total hip replacements is considered to be a prerequisite for the quality of bony ongrowth to the femoral stem. Dynamic motion as a response to loading as well as total motion of the prosthesis have to be considered under quasi-physiological cyclic loading conditions. METHODS: Seven paired fresh cadaveric femora were used for the testing of two types of uncemented femoral stems with different anchoring concepts: CLS stem (Spotorno) and Cone Prosthesis (Wagner). Under sinusoidal cyclic loading mimicking in vivo hip joint forces a new measurement technique was applied allowing for the analysis of the three-dimensional interface motion. RESULTS: Considerable differences between the two prostheses could be detected both in their dynamic motion and total motion behaviour. Whereas the CLS stem, due to the wedge-shaped concept, provides smaller total motions, the longitudinal ribs of the Cone prostheses result in a substantially smaller dynamic motion. CONCLUSIONS: The measuring technique provided reliable and accurate data illustrating the three-dimensional interface motion of uncemented femoral stems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Osteochondral autograft transfer (OAT) aims at restoring normal articular cartilage surface geometry and articular contact mechanics. To date, no studies have evaluated the contact mechanics of the canine stifle following OAT. Additionally, there are no studies that evaluated the role of the meniscus in contact mechanics following OAT in human or canine femorotibial joints. The objective of this study was to measure the changes in femorotibial contact areas (CA), mean contact pressure (MCP) and peak contact pressure (PCP) before and after osteochondral autograft transplantation (OAT) of a simulated lateral femoral condylar cartilage defect with an intact lateral meniscus and following lateral meniscectomy. RESULTS With an intact lateral meniscus, creation of an osteochondral defect caused a decrease in MCP and PCP by 11% and 30%, respectively, compared to the intact stifle (p < 0.01). With an intact meniscus, implanting an osteochondral graft restored MCP and PCP to 96% (p = 0.56) and 92% (p = 0.41) of the control values. Lateral meniscectomy with grafting decreased CA by 54% and increased PCP by 79% compared to the intact stifle (p < 0.01). CONCLUSIONS OAT restored contact pressures in stifles with a simulated lateral condylar defect when the meniscus was intact. The lateral meniscus has a significant role in maintaining normal contact pressures in both stifles with a defect or following OAT. Meniscectomy should be avoided when a femoral condylar defect is present and when performing OAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Traditionally arthrotomy has rarely been performed during surgery for slipped capital femoral epiphysis (SCFE). As a result, most pathophysiological information about the articular surfaces was derived clinically and radiographically. Novel insights regarding deformity-induced damage and epiphyseal perfusion became available with surgical hip dislocation. QUESTIONS/PURPOSES We (1) determined the influence of chronicity of prodromal symptoms and severity of SCFE deformity on severity of cartilage damage. (2) In surgically confirmed disconnected epiphyses, we determined the influence of injury and time to surgery on epiphyseal perfusion; and (3) the frequency of new bone at the posterior neck potentially reducing perfusion during epimetaphyseal reduction. METHODS We reviewed 116 patients with 119 SCFE and available records treated between 1996 and 2011. Acetabular cartilage damage was graded as +/++/+++ in 109 of the 119 hips. Epiphyseal perfusion was determined with laser-Doppler flowmetry at capsulotomy and after reduction. Information about bone at the posterior neck was retrieved from operative reports. RESULTS Ninety-seven of 109 hips (89%) had documented cartilage damage; severity was not associated with higher slip angle or chronicity; disconnected epiphyses had less damage. Temporary or definitive cessation of perfusion in disconnected epiphyses increased with time to surgery; posterior bone resection improved the perfusion. In one necrosis, the retinaculum was ruptured; two were in the group with the longest time interval. Posterior bone formation is frequent in disconnected epiphyses, even without prodromal periods. CONCLUSIONS Addressing the cause of cartilage damage (cam impingement) should become an integral part of SCFE surgery. Early surgery for disconnected epiphyses appears to reduce the risk of necrosis. Slip reduction without resection of posterior bone apposition may jeopardize epiphyseal perfusion. LEVEL OF EVIDENCE Level IV, retrospective case series. See Guidelines for Authors for a complete description of levels of evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Stable reconstruction of proximal femoral (PF) fractures is especially challenging due to the peculiarity of the injury patterns and the high load-bearing requirement. Since its introduction in 2007, the PF-locking compression plate (LCP) 4.5/5.0 has improved osteosynthesis for intertrochanteric and subtrochanteric fractures of the femur. This study reports our early results with this implant. METHODS Between January 2008 and June 2010, 19 of 52 patients (12 males, 7 females; mean age 59 years, range 19-96 years) presenting with fractures of the trochanteric region were treated at the authors' level 1 trauma centre with open reduction and internal fixation using PF-LCP. Postoperatively, partial weight bearing was allowed for all 19 patients. Follow-up included a thorough clinical and radiological evaluation at 1.5, 3, 6, 12, 24, 36 and 48 months. Failure analysis was based on conventional radiological and clinical assessment regarding the type of fracture, postoperative repositioning, secondary fracture dislocation in relation to the fracture constellation and postoperative clinical function (Merle d'Aubigné score). RESULTS In 18 patients surgery achieved adequate reduction and stable fixation without intra-operative complications. In one patient an ad latus displacement was observed on postoperative X-rays. At the third month follow-up four patients presented with secondary varus collapse and at the sixth month follow-up two patients had 'cut-outs' of the proximal fragment, with one patient having implant failure due to a broken proximal screw. Revision surgeries were performed in eight patients, one patient receiving a change of one screw, three patients undergoing reosteosynthesis with implantation of a condylar plate and one patient undergoing hardware removal with secondary implantation of a total hip prosthesis. Eight patients suffered from persistent trochanteric pain and three patients underwent hardware removal. CONCLUSIONS Early results for PF-LCP osteosynthesis show major complications in 7 of 19 patients requiring reosteosynthesis or prosthesis implantation due to secondary loss of reduction or hardware removal. Further studies are required to evaluate the limitations of this device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the ability of dual energy X-rays absorptiometry (DXA) areal bone mineral density (aBMD) measured in different regions of the proximal part of the human femur for predicting the mechanical properties of matched proximal femora tested in two different loading configurations. 36 pairs of fresh frozen femora were DXA scanned and tested until failure in two loading configurations: a fall on the side or a one-legged standing. The ability of the DXA output from four different regions of the proximal femur in predicting the femoral mechanical properties was measured and compared for the two loading scenarios. The femoral neck DXA BMD was best correlated to the femoral ultimate force for both configurations and predicted significantly better femoral failure load (R2=0.80 vs. R2=0.66, P<0.05) when simulating a side than when simulating a standing configuration. Conversely, the work to failure was predicted similarly for both loading configurations (R2=0.54 vs. R2=0.53, P>0.05). Therefore, neck BMD should be considered as one of the key factors for discriminating femoral fracture risk in vivo. Moreover, the better predictive ability of neck BMD for femoral strength if tested in a fall compared to a one-legged stance configuration suggests that DXA's clinical relevance may not be as high for spontaneous femoral fractures than for fractures associated to a fall.