123 resultados para bioorganic chemistry
Resumo:
Two new cyclohexenones (antheminones A and B) and a new cyclohexanone, (antheminone C) along with five known compounds were isolated from the leaves of Anthemis maritima L. The structures were mainly deduced from extensive 1D and 2D NMR spectroscopy and mass spectrometry. The new compounds were tested in vitro for their cytotoxic activity against adherent and non-adherent cancer cell lines. Antheminones A and C exhibited significant antiproliferative activity against leukemia cells with IC(50) values ranging from 3.2 to 14 microM.
Resumo:
An extracellular peroxygenase of Agrocybe aegerita catalyzed the H(2)O(2)-dependent hydroxylation of the multi-function beta-adrenergic blocker propranolol (1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol) and the non-steroidal anti-inflammatory drug diclofenac (2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid) to give the human drug metabolites 5-hydroxypropranolol (5-OHP) and 4'-hydroxydiclofenac (4'-OHD). The reactions proceeded regioselectively with high isomeric purity and gave the desired 5-OHP and 4'-OHD in yields up to 20% and 65%, respectively. (18)O-labeling experiments showed that the phenolic hydroxyl groups in 5-OHP and 4'-OHD originated from H(2)O(2), which establishes that the reaction is mechanistically a peroxygenation. Our results raise the possibility that fungal peroxygenases may be useful for versatile, cost-effective, and scalable syntheses of drug metabolites.
Resumo:
The preparation and biological evaluation of a novel series of dimeric epothilone A derivatives (1-6) are described. Two types of diacyl spacers were introduced to establish the various dimeric epothilone A constructs. The effect of these compounds on tubulin polymerization and their cytotoxicity against four different cancer cell lines are reported. Several of the newly synthesized compounds inhibit endothelial cell differentiation and endothelial cell migration that are key steps of the angiogenic process.
Resumo:
The SAR of a series of new epothilone A derivatives with a 2-substituted-1,3-oxazoline moiety trans-fused to the C12-C13 bond of the deoxy macrocycle have been investigated with regard to tubulin polymerization induction and cancer cell growth inhibition. Significant differences in antiproliferative activity were observed between different analogs, depending on the nature of the substituent at the 2-position of the oxazoline ring. The most potent compounds showed comparable activity with the natural product epothilone A. Modeling studies provide a preliminary rationale for the observed SAR.