152 resultados para bio-implants
Resumo:
Energy-harvesting devices attract wide interest as power supplies of today's medical implants. Their long lifetime will spare patients from repeated surgical interventions. They also offer the opportunity to further miniaturize existing implants such as pacemakers, defibrillators or recorders of bio signals. A mass imbalance oscillation generator, which consists of a clockwork from a commercially available automatic wrist watch, was used as energy harvesting device to convert the kinetic energy from the cardiac wall motion to electrical energy. An MRI-based motion analysis of the left ventricle revealed basal regions to be energetically most favorable for the rotating unbalance of our harvester. A mathematical model was developed as a tool for optimizing the device's configuration. The model was validated by an in vitro experiment where an arm robot accelerated the harvesting device by reproducing the cardiac motion. Furthermore, in an in vivo experiment, the device was affixed onto a sheep heart for 1 h. The generated power in both experiments-in vitro (30 μW) and in vivo (16.7 μW)-is sufficient to power modern pacemakers.
Resumo:
Endometriosis is a painful disease affecting 10-15% of reproductive-age women. Concentrations of several cytokines and angiogenic factors in peritoneal fluid (PF) have been found to correlate with the severity of the disease. However, levels of some analytes vary across the menstrual cycle, and an ideal biomarker of endometriosis has not yet been identified. We have compared the PF concentrations of different cytokines in proliferative and secretory phases in women with and without the disease using the Bio-Plex platform.
Resumo:
Microrough titanium (Ti) surfaces of dental implants have demonstrated more rapid and greater bone apposition when compared with machined Ti surfaces. However, further enhancement of osteoblastic activity and bone apposition by bio-functionalizing the implant surface with a monomolecular adsorbed layer of a co-polymer - i.e., poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its derivatives (PLL-g-PEG/PEG-peptide) - has never been investigated. The aim of the present study was to examine early bone apposition to a modified sandblasted and acid-etched (SLA) surface coated with an Arg-Gly-Asp (RGD)-peptide-modified polymer (PLL-g-PEG/PEG-RGD) in the maxillae of miniature pigs, and to compare it with the standard SLA surface. Test and control implants had the same microrough topography (SLA), but differed in their surface chemistry (polymer coatings). The following surfaces were examined histomorphometrically: (i) control - SLA without coating; (ii) (PLL-g-PEG); (iii) (PLL-g-PEG/PEG-RDG) (RDG, Arg-Asp-Gly); and (iv) (PLL-g-PEG/PEG-RGD). At 2 weeks, RGD-coated implants demonstrated significantly higher percentages of bone-to-implant contact as compared with controls (61.68% vs. 43.62%; P < 0.001). It can be concluded that the (PLL-g-PEG/PEG-RGD) coatings may promote enhanced bone apposition during the early stages of bone regeneration.
Resumo:
PURPOSE: In the present cohort study, overdentures with a combined root and implant support were evaluated and compared with either exclusively root- or implant-supported overdentures. Results of a 2-year follow-up period are reported, namely survival of implants, root copings, and prostheses, plus prosthetic complications, maintenance service, and patient satisfaction. MATERIALS AND METHODS: Fourteen patients were selected for the combined overdenture therapy and were compared with 2 patient groups in which either roots or implants provided overdenture support. Altogether, 14, 17, and 15 patients (in groups 1, 2, and 3, respectively) were matched with regard to age, sex, treatment time, and observation period. The mean age was around 67 years. Periodontal parameters were recorded, radiographs were taken, and all complications and failures were registered during the entire observation time. The patients answered a 9-item questionnaire by means of a visual analogue scale (VAS). RESULTS: One implant failed and 1 tooth root was removed following longitudinal root fracture. Periodontal/peri-implant parameters gave evidence of good oral hygiene for roots and implants, and slight crestal bone resorption was measured for both. Technical complications and service performed were significantly higher in the first year (P < .04) in all 3 groups and significantly higher in the tooth root group (P < .03). The results of the VAS indicated significantly lower scores for satisfaction, speaking ability, wearing comfort, and denture stability with combined or exclusive root support (P < .05 and .02, respectively). Initial costs of overdentures with combined or root support were 10% lower than for implant overdentures. CONCLUSION: The concept of combined root and implant support can be integrated into treatment planning and overdenture design for patients with a highly reduced dentition.
Resumo:
The purpose of this study was to acquire information about the effect of an antibacterial and biodegradable poly-L-lactide (PLLA) coated titanium plate osteosynthesis on local infection resistance. For our in vitro and in vivo experiments, we used six-hole AO DC minifragment titanium plates. The implants were coated with biodegradable, semiamorphous PLLA (coating about 30 microm thick). This acted as a carrier substance to which either antibiotics or antiseptics were added. The antibiotic we applied was a combination of Rifampicin and fusidic acid; the antiseptic was a combination of Octenidin and Irgasan. This produced the following groups: Group I: six-hole AO DC minifragment titanium plate without PLLA; Group II: six-hole AO DC minifragment titanium plate with PLLA without antibiotics/antiseptics; Group III: six-hole AO DC minifragment titanium plate with PLLA + 3% Rifampicin and 7% fusidic acid; Group IV: six-hole AO DC minifragment titanium plate with PLLA + 2% Octenidin and 8% Irgasan. In vitro, we investigated the degradation and the release of the PLLA coating over a period of 6 weeks, the bactericidal efficacy of antibiotics/antiseptics after their release from the coating and the bacterial adhesion of Staphylococcus aureus to the implants. In vivo, we compared the infection rates in white New Zealand rabbits after titanium plate osteosynthesis of the tibia with or without antibacterial coating after local percutaneous bacterial inoculations at different concentrations (2 x 10(5)-2 x 10(8)): The plate, the contaminated soft tissues and the underlying bone were removed under sterile conditions after 28 days and quantitatively evaluated for bacterial growth. A stepwise experimental design with an "up-and-down" dosage technique was used to adjust the bacterial challenge in the area of the ID50 (50% infection dose). Statistical evaluation of the differences between the infection rates of both groups was performed using the two-sided Fisher exact test (p < 0.05). Over a period of 6 weeks, a continuous degradation of the PLLA coating of 13%, on average, was seen in vitro in 0.9% NaCl solution. The elution tests on titanium implants with antibiotic or antiseptic coatings produced average release values of 60% of the incorporated antibiotic or 62% of the incorporated antiseptic within the first 60 min. This was followed by a much slower, but nevertheless continuous, release of the incorporated antibiotic and antiseptic over days and weeks. At the end of the test period of 42 days, 20% of the incorporated antibiotic and 15% of the incorporated antiseptic had not yet been released from the coating. The antibacterial effect of the antibiotic/antiseptic is not lost by integrating it into the PLLA coating. The overall infection rate in the in vivo investigation was 50%. For Groups I and II the infection rate was both 83% (10 of 12 animals). In Groups III and IV with antibacterial coating, the infection rate was both 17% (2 of 12 animals). The ID50 in the antibacterial coated Groups III and IV was recorded as 1 x 10(8) CFU, whereas the ID50 values in the Groups I and II without antibacterial coating were a hundred times lower at 1 x 10(6) CFU, respectively. The difference between the groups with and without antibacterial coating was statistically significant (p = 0.033). Using an antibacterial biodegradable PLLA coating on titanium plates, a significant reduction of infection rate in an in vitro and in vivo investigation could be demonstrated. For the first time, to our knowledge, we were able to show, under standardized and reproducible conditions, that an antiseptic coating leads to the same reduction in infection rate as an antibiotic coating. Taking the problem of antibiotic-induced bacterial resistance into consideration, we thus regard the antiseptic coating, which shows the same level of effectiveness, as advantageous.
Resumo:
INTRODUCTION: Osteoporosis is not only responsible for an increased number of metaphyseal and spinal fractures but it also complicates their treatment. To prevent the initial loosening, we developed a new implant with an enlarged implant/bone interface based on the concept of perforated, hollow cylinders. We evaluated whether osseointegration of a hollow cylinder based implant takes place in normal or osteoporotic bone of sheep under functional loading conditions during anterior stabilization of the lumbar spine. MATERIALS AND METHODS: Osseointegration of the cylinders and status of the fused segments (ventral corpectomy, replacement with iliac strut, and fixation with testing implant) were investigated in six osteoporotic (age 6.9 +/- 0.8 years, mean body weight 61.1 +/- 5.2 kg) and seven control sheep (age 6.1 +/- 0.2 years, mean body weight 64.9 +/- 5.7 kg). Osteoporosis was introduced using a combination protocol of ovariectomy, high-dose prednisone, calcium and phosphor reduced diet and movement restriction. Osseointegration was quantified using fluorescence and conventional histology; fusion status was determined using biomechanical testing of the stabilized segment in a six-degree-of-freedom loading device as well as with radiological and histological staging. RESULTS: Intact bone trabeculae were found in 70% of all perforations without differences between the two groups (P = 0.26). Inside the cylinders, bone volume/total volume was significantly higher than in the control vertebra (50 +/- 16 vs. 28 +/- 13%) of the same animal (P<0.01), but significantly less (P<0.01) than in the near surrounding (60 +/- 21%). After biomechanical testing as described in Sect. "Materials and methods", seven spines (three healthy and four osteoporotic) were classified as completely fused and six (four healthy and two osteoporotic) as not fused after a 4-month observation time. All endplates were bridged with intact trabeculae in the histological slices. CONCLUSIONS: The high number of perforations, filled with intact trabeculae, indicates an adequate fixation; bridging trabeculae between adjacent endplates and tricortical iliac struts in all vertebrae indicates that the anchorage is adequate to promote fusion in this animal model, even in the osteoporotic sheep.
Resumo:
PURPOSE: The aim of the present clinical trial was to evaluate the 12-month success rate of titanium dental implants placed in the posterior mandible and immediately loaded with 3-unit fixed partial dentures. MATERIALS AND METHODS: Patients with missing mandibular premolars and molars were enrolled in this study. To be included in the study, the implants had to show good primary stability. Implant stability was measured with resonance frequency analysis using the Osstell device (Integration Diagnostics). Implants were included in the study when the stability quotient (ISQ) exceeded 62. Clinical measurements, such as width of keratinized tissue, ISQ, and radiographic assessment of peri-implant bone crest levels, were performed at baseline and at the 12-month follow-up. The comparison between the baseline and the 12-month visits was performed with the Student t test for paired data (statistically significant at a level of alpha = 0.05). RESULTS: Forty implants with a sandblasted, large grit, acid-etched (SLA) surface (Straumann) were placed in 20 patients. At 12 months, only 1 implant had been lost because of an acute infection. The remaining 39 implants were successful, resulting in a 1-year success rate of 97.5%. Neither peri-implant bone levels, measured radiographically, nor implant stability changed significantly from baseline to the 12-month follow-up (P > .05). DISCUSSION: The immediate functional loading of implants placed in this case series study resulted in a satisfactory success rate. CONCLUSION: The findings from this clinical study showed that the placement of SLA transmucosal implants in the mandibular area and their immediate loading with 3-unit fixed partial dentures may be a safe and successful procedure.
Resumo:
BACKGROUND: Bone morphogenetic protein (BMP) is a potent differentiating agent for cells of the osteoblastic lineage. It has been used in the oral cavity under a variety of indications and with different carriers. However, the optimal carrier for each indication is not known. This study examined a synthetic bioabsorbable carrier for BMP used in osseous defects around dental implants in the canine mandible. METHODS: Twelve canines had their mandibular four premolars and first molar teeth extracted bilaterally. After 5 months, four implants were placed with standardized circumferential defects around the coronal 4 mm of each implant. One-half of the defects received a polylactide/glycolide (PLGA) polymer carrier with or without recombinant human BMP-2 (rhBMP-2), and the other half received a collagen carrier with or without rhBMP-2. Additionally, one-half of the implants were covered with a non-resorbable (expanded polytetrafluoroethylene [ePTFE]) membrane to exclude soft tissues. Animals were sacrificed either 4 or 12 weeks later. Histomorphometric analysis included the percentage of new bone contact with the implant, the area of new bone, and the percentage of defect fill. This article describes results with the PLGA carrier. RESULTS: All implants demonstrated clinical and radiographic success with the amount of new bone formed dependent on the time and presence/absence of rhBMP-2 and presence/absence of a membrane. The percentage of bone-to-implant contact was greater with rhBMP-2, and after 12 weeks of healing, there was approximately one-third of the implant contacting bone in the defect site. After 4 weeks, the presence of a membrane appeared to slow new bone area formation. The percentage of fill in membrane-treated sites with rhBMP-2 rose from 24% fill to 42% after 4 and 12 weeks, respectively. Without rhBMP-2, the percentage of fill was 14% rising to 36% fill, respectively. CONCLUSIONS: After 4 weeks, the rhBMP-2-treated sites had a significantly higher percentage of contact, more new bone area, and higher percentage of defect fill than the sites without rhBMP-2. After 12 weeks, there was no significant difference in sites with or without rhBMP-2 regarding percentage of contact, new bone area, or percentage of defect fill. In regard to these three outcomes, comparing the results with this carrier to the results reported earlier with a collagen carrier in this study, only the area of new bone was significantly different with the collagen carrier resulting in greater bone than the PLGA carrier. Thus, the PLGA carrier for rhBMP-2 significantly stimulated bone formation around dental implants in this model after 1 month but not after 3 months of healing. The use of this growth factor and carrier combination appears to stimulate early bone healing events around the implants but not quite to the same degree as a collagen carrier.
Resumo:
To evaluate the osteoinductive potential of deproteinized bovine bone mineral (DBBM) and an enamel matrix derivative (EMD) in the muscle of rats. Sixteen rats were used in this study. The animals were divided in three groups. Group A: a pouch was created in one of the pectoralis profundis muscles of the thorax of the rats and DBBM particles (Bio-Oss) were placed into the pouch. Healing: 60 days. Group B: a small pouch was created on both pectoralis profundis muscles at each side of the thorax midline. In one side, a mixture of EMD (Emdogain) mixed with DBBM was placed into one of the pouches, whereas in the contralateral side of the thorax the pouch was implanted with DBBM mixed with the propylene glycol alginate (PGA--carrier for enamel matrix proteins of EMD). Healing: 60 days. Group C: the same procedure as group B, but with a healing period of 120 days. Qualitative histological analysis of the results was performed. At 60 days, the histological appearance of the DBBM particles implanted alone was similar to that of the particles implanted together with EMD or PGA at both 60 and 120 days. The DBBM particles were encapsulated into a connective tissue stroma and an inflammatory infiltrate. At 120 days, the DBBM particles implanted together with EMD or PGA exhibited the presence of resorption lacunae in some cases. Intramuscular bone formation was not encountered in any group. The implantation of DBBM particles alone, combined with EMD or its carrier (PGA) failed to exhibit extraskeletal, bone-inductive properties.
Resumo:
AIM: To investigate the significance of the initial stability of dental implants for the establishment of osseointegration in an experimental capsule model for bone augmentation. MATERIAL AND METHODS: Sixteen male rats were used in the study. In each rat, muscle-periosteal flaps were elevated on the lateral aspect of the mandibular ramus on both sides, resulting in exposure of the bone surface. Small perforations were then produced in the ramus. A rigid, hemispherical Teflon capsule with a diameter of 6 mm and a height of 4 mm and with a hole in its middle portion, prepared to fit the circumference of an ITI HC titanium implant of 2.8 mm in diameter, was fixed to the ramus using 4 mini-screws. On one side of the jaw, the implant was placed through the hole in such a way that its apex did not make contact with the mandibular ramus (test). This placement of the implant did not ensure primary stability. On the other side of the jaw, a similar implant was placed through the hole of the capsule in such a way that contact was made between the implant and the surface of the ramus (control). This provided primary stability of the implant. After placement of the implants, the soft tissues were repositioned over the capsules and sutured. After 1, 3, 6 and 9 months, four animals were sacrificed and subjected to histometric analysis. RESULTS: The mean height of direct bone-to-implant contact of implants with primary stability was 38.8%, 52.9%, 64.6% and 81.3% of the implant length at 1, 3, 6 and 9 months, respectively. Of the bone adjacent to the implant surface, 28.1%, 28.9%, 52.6% and 69.6%, respectively, consisted of mineralized bone. At the test implants, no bone-to-implant contact was observed at any observation time or in any of these non-stabilized specimens. CONCLUSION: The findings of the present study indicate that primary implant stability is a prerequisite for successful osseointegration, and that implant instability results in fibrous encapsulation, thus confirming previously made clinical observations.
Resumo:
The technique of the osteotome-mediated transcrestal sinus floor elevation is described in a series of case reports. Fifty-five patients received a total of 66 implants over a period of 6 years. Bio-Oss was added in more than 60% of cases to increase the stability of the lifted area. The surgical procedure appeared to be a safe method that was well supported by the patients. It was applied for different prosthetic indications in partially and completely edentulous situations. The survival rate of the implants during the healing phase was 98.5%, and it was 100% after loading. The patients' responses to the Summers technique were evaluated by means of short interviews and visual analog scales (VAS), and the answers were compared with those from a group of patients who had received implants in the same location during the same period but without the osteotome technique. The answers regarding pain were not different between the groups. However, significantly more patients who had received the implants by means of the osteotome technique judged the surgical procedure as highly uncomfortable. It is concluded that patients need to be well prepared for the procedure.
Resumo:
AIM: The purpose of this randomized split-mouth clinical trial was to determine the active tactile sensibility between single-tooth implants and opposing natural teeth and to compare it with the tactile sensibility of pairs of natural teeth on the contralateral side in the same mouth (intraindividual comparison). MATERIAL AND METHODS: The hypothesis was that the active tactile sensibilities of the implant side and control side are equivalent. Sixty two subjects (n=36 from Bonn, n=26 from Bern) with single-tooth implants (22 anterior and 40 posterior dental implants) were asked to bite on narrow copper foil strips varying in thickness (5-200 microm) and to decide whether or not they were able to identify a foreign body between their teeth. Active tactile sensibility was defined as the 50% threshold of correct answers estimated by means of the Weibull distribution. RESULTS: The results obtained for the interocclusal perception sensibility differed between subjects far more than they differed between natural teeth and implants in the same individual [implant/natural tooth: 16.7+/-11.3 microm (0.6-53.1 microm); natural tooth/natural tooth: 14.3+/-10.6 microm (0.5-68.2 microm)]. The intraindividual differences only amounted to a mean value of 2.4+/-9.4 microm (-15.1 to 27.5 microm). The result of our statistical calculations showed that the active tactile sensibility of single-tooth implants, both in the anterior and posterior region of the mouth, in combination with a natural opposing tooth is similar to that of pairs of opposing natural teeth (double t-test, equivalence margin: +/-8 microm, P<0.001, power >80%). Hence, the implants could be integrated in the stomatognathic control circuit.