86 resultados para bibliographic coupling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cardiac muscle, a number of posttranslational protein modifications can alter the function of the Ca(2+) release channel of the sarcoplasmic reticulum (SR), also known as the ryanodine receptor (RyR). During every heartbeat RyRs are activated by the Ca(2+)-induced Ca(2+) release mechanism and contribute a large fraction of the Ca(2+) required for contraction. Some of the posttranslational modifications of the RyR are known to affect its gating and Ca(2+) sensitivity. Presently, research in a number of laboratories is focused on RyR phosphorylation, both by PKA and CaMKII, or on RyR modifications caused by reactive oxygen and nitrogen species (ROS/RNS). Both classes of posttranslational modifications are thought to play important roles in the physiological regulation of channel activity, but are also known to provoke abnormal alterations during various diseases. Only recently it was realized that several types of posttranslational modifications are tightly connected and form synergistic (or antagonistic) feed-back loops resulting in additive and potentially detrimental downstream effects. This review summarizes recent findings on such posttranslational modifications, attempts to bridge molecular with cellular findings, and opens a perspective for future work trying to understand the ramifications of crosstalk in these multiple signaling pathways. Clarifying these complex interactions will be important in the development of novel therapeutic approaches, since this may form the foundation for the implementation of multi-pronged treatment regimes in the future. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupling relationships between hillslope and channel network are fundamental for the understanding of mountainous landscapes' evolution. Here, we applied dendrogeomorphic methods to identify the hillslope–channel relationship and the sediment transfer dynamics within an alpine catchment, at the highest possible resolution. The Schimbrig catchment is located in the central Swiss Alps and can be divided into two distinct geomorphic sectors. To the east, the Schimbrig earth flow is the largest sediment source of the basin, while to the west, the Rossloch channel network is affected by numerous shallow landslides responsible for the supply of sediment from hillslopes to channels. To understand the connectivity between hillslopes and channels and between sources and sink, trees were sampled along the main Rossloch stream, on the Schimbrig earth flow and on the Rossloch depositional area. Geomorphic observations and dendrogeomophic results indicate different mechanisms of sediment production, transfer and deposition between upper and lower segments of the channel network. In the source areas (upper part of the Rossloch channel system), sediment is delivered to the channel network through slow movements of the ground, typical of earth flow, shallow landslides and soil creep. Contrariwise, in the depositional area (lower part of the channel network), the mechanisms of sediment transfer are mainly due to torrential activity, floods and debris flows. Tree analysis allowed the reconstruction of periods of high activity during the last century for the entire catchment. The collected dataset presents a very high temporal resolution but we encountered some limitations in establishing the source-to-sink connectivity at the catchment-wide scale. Despite these uncertainties, for decennial timescales the results suggest a direct coupling between hillslopes and neighbouring channels in the Rossloch channel network, and a de-coupling between sediment sources and sink farther downstream, with connections possible only during extraordinary events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass spectrometric analysis of elemental and isotopic compositions of several NIST standards is performed by a miniature laser ablation/ionisation reflectron-type time-of-flight mass spectrometer (LMS) using a fs-laser ablation ion source (775 nm, 190 fs, 1 kHz). The results of the mass spectrometric studies indicate that in a defined range of laser irradiance (fluence) and for a certain number of accumulations of single laser shot spectra, the measurements of isotope abundances can be conducted with a measurement accuracy at the per mill level and at the per cent level for isotope concentrations higher and lower than 100 ppm, respectively. Also the elemental analysis can be performed with a good accuracy. The LMS instrument combined with a fs-laser ablation ion source exhibits similar detection efficiency for both metallic and non-metallic elements. Relative sensitivity coefficients were determined and found to be close to one, which is of considerable importance for the development of standard-less instruments. Negligible thermal effects, sample damage and excellent characteristics of the fs-laser beam are thought to be the main reason for substantial improvement of the instrumental performance compared to other laser ablation mass spectrometers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a new measurement of the neutron beta-asymmetry parameter A with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1) from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=−0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=−1.2767(16)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI) on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: measuring brain activity from two or more people simultaneously, termed "hyperscanning". The hyperscanning approach has the potential to reveal inter-personal brain mechanisms underlying interaction-mediated brain-to-brain coupling. These mechanisms are engaged during real social interactions, and cannot be captured using single-subject recordings. In particular, functional near-infrared imaging (fNIRI) hyperscanning is a promising new method, offering a cost-effective, easy to apply and reliable technology to measure inter-personal interactions in a natural context. In this short review we report on fNIRI hyperscanning studies published so far and summarize opportunities and challenges for future studies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt transport in the Irminger Current and thus the coupling between eastern and western subpolar North Atlantic plays an important role for climate variability across a wide range of time scales. High-resolution ocean modeling and observations indicate that 5 salinities in the eastern subpolar North Atlantic decrease with enhanced circulation of the North Atlantic subpolar gyre (SPG). This has led to the perception that a stronger SPG also transports less salt westward. In this study, we analyze a regional ocean model and a comprehensive global coupled climate model, and show that a stronger SPG transports more salt in the Irminger Current irrespective of lower salinities in its 10 source region. The additional salt converges in the Labrador Sea and the Irminger Basin by eddy transports, increases surface salinity in the western SPG, and favors more intense deep convection. This is part of a positive feedback mechanism with potentially large implications for climate variability and predictability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-atmosphere coupling and its impact on extreme precipitation and temperature events over North America are studied using the fifth generation of the Canadian Regional Climate Model (CRCM5). To this effect, two 30 year long simulations, spanning the 1981–2010 period, with and without land-atmosphere coupling, have been performed with CRCM5, driven by the European Centre for Medium-Range Weather Forecasts reanalysis at the boundaries. In the coupled simulation, the soil moisture interacts freely with the atmosphere at each time step, while in the uncoupled simulation, soil moisture is replaced with its climatological value computed from the coupled simulation, thus suppressing the soil moisture-atmosphere interactions. Analyses of the coupled and uncoupled simulations, for the summer period, show strong soil moisture-temperature coupling over the Great Plains, consistent with previous studies. The maxima of soil moisture-precipitation coupling is more spread out and covers the semiarid regions of the western U.S. and parts of the Great Plains. However, the strength of soil moisture-precipitation coupling is found to be generally weaker than that of soil moisture-temperature coupling. The study clearly indicates that land-atmosphere coupling increases the interannual variability of the seasonal mean daily maximum temperature in the Great Plains. Land-atmosphere coupling is found to significantly modulate selected temperature extremes such as the number of hot days, frequency, and maximum duration of hot spells over the Great Plains. Results also suggest additional hot spots, where soil moisture modulates extreme events. These hot spots are located in the southeast U.S. for the hot days/hot spells and in the semiarid regions of the western U.S. for extreme wet spells. This study thus demonstrates that climatologically wet/dry regions can become hot spots of land-atmosphere coupling when the soil moisture decreases/increases to an intermediate transitional level where evapotranspiration becomes moisture sensitive and large enough to affect the climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a novel strategy for the regulation of charge transport through single molecule junctions via the combination of external stimuli of electrode potential, internal modulation of molecular structures, and optimization of anchoring groups. We have designed redox-active benzodifuran (BDF) compounds as functional electronic units to fabricate metal–molecule–metal (m–M–m) junction devices by scanning tunneling microscopy (STM) and mechanically controllable break junctions (MCBJ). The conductance of thiol-terminated BDF can be tuned by changing the electrode potentials showing clearly an off/on/off single molecule redox switching effect. To optimize the response, a BDF molecule tailored with carbodithioate (−CS2–) anchoring groups was synthesized. Our studies show that replacement of thiol by carbodithioate not only enhances the junction conductance but also substantially improves the switching effect by enhancing the on/off ratio from 2.5 to 8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software dependencies play a vital role in programme comprehension, change impact analysis and other software maintenance activities. Traditionally, these activities are supported by source code analysis; however, the source code is sometimes inaccessible or difficult to analyse, as in hybrid systems composed of source code in multiple languages using various paradigms (e.g. object-oriented programming and relational databases). Moreover, not all stakeholders have adequate knowledge to perform such analyses. For example, non-technical domain experts and consultants raise most maintenance requests; however, they cannot predict the cost and impact of the requested changes without the support of the developers. We propose a novel approach to predicting software dependencies by exploiting the coupling present in domain-level information. Our approach is independent of the software implementation; hence, it can be used to approximate architectural dependencies without access to the source code or the database. As such, it can be applied to hybrid systems with heterogeneous source code or legacy systems with missing source code. In addition, this approach is based solely on information visible and understandable to domain users; therefore, it can be efficiently used by domain experts without the support of software developers. We evaluate our approach with a case study on a large-scale enterprise system, in which we demonstrate how up to 65 of the source code dependencies and 77% of the database dependencies are predicted solely based on domain information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

10.1002/hlca.19980810512.abs The synthesis of the Fmoc-protected amino acid 2 is presented. First attempts of amide-bond formation to the homodimer 4 in solution showed only poor coupling yields indicative for the low reactivity of the amino and carboxy groups in the building blocks 1 and 2, respectively (Scheme 1). Best coupling yields were found using dicyclohexylcarbodiimide (DCC) without any additive. The oligomerization of building block 2 adopting the Fmoc ((9H-fluoren-9-ylmethoxy)carbonyl) solid-phase synthesis yielded a mixture of N-terminal-modified distamycin-NA derivatives. By combined HPLC and MALDI-TOF-MS analysis, the N-terminal functional groups could be identified as acetamide and N,N-dimethylformamidine functions, arising from coupling of the N-terminus of the growing chain with residual AcOH or DCC-activated solvent DMF. An improved preparation of building block 2 and coupling protocol led to the prevention of the N-terminal acetylation. However, ‘amidination’ could not be circumvented. A thus isolated tetramer of 2, containing a lysine unit at the C-terminus and a N,N-dimethylformamidine-modified N-terminus, not unexpectedly, showed no complementary base pairing to DNA and RNA, as determined by standard UV-melting-curve analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sound knowledge of the spatial and temporal patterns of rockfalls is fundamental for the management of this very common hazard in mountain environments. Process-based, three-dimensional simulation models are nowadays capable of reproducing the spatial distribution of rockfall occurrences with reasonable accuracy through the simulation of numerous individual trajectories on highly-resolved digital terrain models. At the same time, however, simulation models typically fail to quantify the ‘real’ frequency of rockfalls (in terms of return intervals). The analysis of impact scars on trees, in contrast, yields real rockfall frequencies, but trees may not be present at the location of interest and rare trajectories may not necessarily be captured due to the limited age of forest stands. In this article, we demonstrate that the coupling of modeling with tree-ring techniques may overcome the limitations inherent to both approaches. Based on the analysis of 64 cells (40 m × 40 m) of a rockfall slope located above a 1631-m long road section in the Swiss Alps, we illustrate results from 488 rockfalls detected in 1260 trees. We illustrate that tree impact data cannot only be used (i) to reconstruct the real frequency of rockfalls for individual cells, but that they also serve (ii) the calibration of the rockfall model Rockyfor3D, as well as (iii) the transformation of simulated trajectories into real frequencies. Calibrated simulation results are in good agreement with real rockfall frequencies and exhibit significant differences in rockfall activity between the cells (zones) along the road section. Real frequencies, expressed as rock passages per meter road section, also enable quantification and direct comparison of the hazard potential between the zones. The contribution provides an approach for hazard zoning procedures that complements traditional methods with a quantification of rockfall frequencies in terms of return intervals through a systematic inclusion of impact records in trees.