93 resultados para Winter Storm
Resumo:
Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.
Resumo:
Conspecific aggregation of waterfowl in winter is a common example of animal flocking behaviour, yet patterns of relatedness and temporal substructure in such social groups remain poorly understood even in common species. A previous study based on mark-recapture data showed that Tufted Ducks Aythya fuligula caught on the same day were re-caught together in subsequent winters more often than expected by chance, suggesting stable assortments of ‘socially familiar’ individuals between wintering periods. The genetic relationships within these social groups were not clear. Based on 191 individuals genotyped at 10 microsatellite markers, we investigated the temporal genetic structure and patterns of relatedness among wintering Tufted Ducks at Lake Sempach, Switzerland, in two consecutive winters. We found no evidence of genetic differentiation between temporal groups within or between winters. The average levels of relatedness in temporal groups were low and not higher than expected in random assortments of individuals. However, Mantel tests performed for each sex separately revealed significant negative correlations between the pairwise relatedness coefficients and the number of days between the capture dates of pairs of wintering Tufted Duck in males and females. This pattern suggests the presence of a small number of co-migrating same-sex sibling pairs in wintering flocks of Tufted Ducks. Our findings provide one of the first genetic analyses of a common duck species outside the breeding season and contribute to the understanding of social interactions in long-distance migratory birds.
Resumo:
Five seismic units may be identified in the similar to 8 m thick Holocene sediment package at the bottom of the Blue Hole, a 120 m deep sinkhole located in the atoll lagoon of Lighthouse Reef, Belize. These units may be correlated with the succession of an existing 5.85-m-long sediment core that reaches back to 1385 kyrs BP. The identification of seismic units is based on the fact that uniform, fine-grained background sediments show weak reflections while alternating background and coarser-grained event (storm) beds exhibit strong reflections in the seismic profiles. The main source of sediments is the marginal atoll reef and adjacent lagoon area to the east and north. Northeasterly winds and storms transport sediment into the Blue Hole, as seen in the eastward increase in sediment thickness, i.e., the eastward shallowing of the Blue Hole. Previous assumptions of much thicker Holocene sediment packages in the Blue Hole could not be confirmed. So far, close to 6-m-long cores were retrieved from the Blue Hole but the base of the sedimentary succession remains to be recovered. The nature of the basal sediments is unknown but mid-Holocene and possibly older, Pleistocene sinkhole deposits can be expected. The number of event beds identified in the Blue Hole (n = 37) during a 1.385 kyr-long period and the number of cyclones listed in historical databases suggest that only strong hurricanes (categories 4 and 5) left event beds in the Blue Hole sedimentary succession. Storm beds are numerous during 13-0.9 kyrs BP and 0.8-0.5 kyrs BP.
Resumo:
An important key for the understanding of the dynamic response to large tropical volcanic eruptions is the warming of the tropical lower stratosphere and the concomitant intensification of the polar vortices. Although this mechanism is reproduced by most general circulation models today, most models still fail in producing an appropriate winter warming pattern in the Northern Hemisphere. In this study ensemble sensitivity experiments were carried out with a coupled atmosphere-ocean model to assess the influence of different ozone climatologies on the atmospheric dynamics and in particular on the northern hemispheric winter warming. The ensemble experiments were perturbed by a single Tambora-like eruption. Larger meridional gradients in the lower stratospheric ozone favor the coupling of zonal wind anomalies between the stratosphere and the troposphere after the eruption. The associated sea level pressure, temperature, and precipitation patterns are more pronounced and the northern hemispheric winter warming is highly significant. Conversely, weaker meridional ozone gradients lead to a weaker response of the winter warming and the associated patterns. The differences in the number of stratosphere-troposphere coupling events between the ensembles experiments indicate a nonlinear response behavior of the dynamics with respect to the ozone and the volcanic forcing.
Resumo:
For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.
Resumo:
Waterbirds are often observed to move between different wintering sites within the same winter—for example, in response to food availability or weather conditions. Within-winter movements may contribute to the spreading of diseases, such as avian influenza, outside the actual migration period. The Common Pochard Aythya ferina seems to be particularly sensitive to infection with the highly pathogenic avian influenza virus H5N1 and, consequently, could play an important role as vectors for the disease. We describe here the within-winter movements of Pochards in Europe in relation to topography, climate, sex and age. We analysed data provided by the Euring data bank on 201 individuals for which records from different locations from the same winter (December–February) were available. The distances and directions moved within the winter varied markedly between regions, which could be ascribed to the differing topography (coast lines, Alps). We found no significant differences in terms of distances and directions moved between the sexes and only weak indications of differences between the age classes. In Switzerland, juveniles moved in more westerly directions than adults. During relatively mild winters, winter harshness had no effect on the distances travelled, but in cold winters, a positive relationship was observed, a pattern possibly triggered by the freezing of lakes. Winter harshness did not influence the directions of the movement. About 41% (83/201) of the Pochards that were recovered at least 1 km from the ringing site had moved more than 200 km. A substantial number of birds moved between central/southern Europe and the north-western coast of mainland Europe, and between the north-western coast of mainland Europe and Great Britain, whereas no direct exchange between Great Britain and central/southern Europe was observed. Within-winter movements of Pochards seem to be a common phenomenon in all years and possibly occur as a response to the depletion of food resources. This high tendency to move could potentially contribute to the spread of bird-transmitted diseases outside the actual migration period.
Resumo:
Serial correlation of extreme midlatitude cyclones observed at the storm track exits is explained by deviations from a Poisson process. To model these deviations, we apply fractional Poisson processes (FPPs) to extreme midlatitude cyclones, which are defined by the 850 hPa relative vorticity of the ERA interim reanalysis during boreal winter (DJF) and summer (JJA) seasons. Extremes are defined by a 99% quantile threshold in the grid-point time series. In general, FPPs are based on long-term memory and lead to non-exponential return time distributions. The return times are described by a Weibull distribution to approximate the Mittag–Leffler function in the FPPs. The Weibull shape parameter yields a dispersion parameter that agrees with results found for midlatitude cyclones. The memory of the FPP, which is determined by detrended fluctuation analysis, provides an independent estimate for the shape parameter. Thus, the analysis exhibits a concise framework of the deviation from Poisson statistics (by a dispersion parameter), non-exponential return times and memory (correlation) on the basis of a single parameter. The results have potential implications for the predictability of extreme cyclones.
Resumo:
This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.
Resumo:
This study investigates the characteristics of the quasi 16-day wave in the mesosphere during boreal winter 2011/2012 using observations of water vapor from ground-based microwave radiometers and satellite data. The ground-based microwave radiometers are located in Seoul (South Korea, 37° N), Bern (Switzerland, 47° N) and Sodankylä (Finland, 67° N). The quasi 16-day wave is observed in the mesosphere at all three locations, while the dominant period increases with latitude from 15 days at Seoul to 20 days at Sodankylä. The observed evolution of the quasi 16-day wave confirms that the wave activity is strongly decreased during a sudden stratospheric warming that occurred in mid-January 2012. Using satellite data from the Microwave Limb Sounder on the Aura satellite, we examine the zonal characteristics of the quasi 16-day wave and conclude that the observed waves above the mid-latitudinal stations Seoul and Bern are eastward-propagating s=−1 planetary waves with periods of 15 to 16 days, while the observed oscillation above the polar station Sodankylä is a standing oscillation with a period of approximately 20 days. The strongest relative wave amplitudes in water vapor during the investigated time period are approximately 15%. The wave activity varies strongly along a latitude circle. The activity of the quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012 is strongest over Northern Europe, the North Atlantic ocean and North-West Canada. The region of highest wave activity seems to be related to the position of the polar vortex. We conclude that the classic approach to characterize planetary waves zonally averaged along a latitude circle is not sufficient to explain the local observations because of the strong longitudinal dependence of the wave activity.
Resumo:
Introduction: Drought is one of the most significant factors that limit plant productivity. Oxidative stress is a secondary event in many unfavorable environmental conditions. Intracellular proteases have a role in the metabolism reorganisation and nutrient remobilization under stress. In order to under stand the relative significance of oxidative stress and proteolysis in the yield reduction under drought, four varieties of Triticum aestivum L. with different field drought resistance were examined. Methods: A two-year field experiment was conducted. Analyses were performed on the upper most leaf of control plants and plants under water deficitat the stages most critical for yield reduction under drought (from jointing till milk ripeness). Leaf water deficit and electrolyte leakage, malondyaldehyde level, activities and isoenzymes of superoxide dismutase, catalase and peroxidase, leaf protein content and proteolytic activity were studied. Yield components were analyzed. Results: A general trend of increasing the membrane in stability and accumulation of lipid hydroperoxides was observed with some differences among varieties, especially under drought. The anti-oxidative enzyme activities were progressively enhanced, as well as the azocaseinolytic activities. The leaf protein content decreased under drought at the last phase. Differences among varieties were observed in the parameters under study. They were compared to yield components` reduction under water deprivation.
Resumo:
This study investigates the characteristics of the quasi 16-day wave in the mesosphere during boreal winter 2011/2012 using observations of water vapor from ground-based microwave radiometers and satellite data. The ground-based microwave radiometers are located in Seoul (South Korea, 37° N), Bern (Switzerland, 47° N) and Sodankylä (Finland, 67° N). The quasi 16-day wave is observed in the mesosphere at all three locations, while the dominant period increases with latitude from 15 days at Seoul to 20 days at Sodankylä. The observed evolution of the quasi 16-day wave confirms that the wave activity is strongly decreased during a sudden stratospheric warming that occurred in mid-January 2012. Using satellite data from the Microwave Limb Sounder on the Aura satellite, we examine the zonal characteristics of the quasi 16-day wave and conclude that the observed waves above the midlatitudinal stations Seoul and Bern are eastward-propagating s = −1 planetary waves with periods of 15 to 16 days, while the observed oscillation above the polar station Sodankylä is a standing wave with a period of approximately 20 days. The strongest relative wave amplitudes in water vapor during the investigated time period are approximately 15%. The wave activity varies strongly along a latitude circle. The activity of the quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012 is strongest over northern Europe, the North Atlantic Ocean and northwestern Canada. The region of highest wave activity seems to be related to the position of the polar vortex. We conclude that the classic approach to characterize planetary waves zonally averaged along a latitude circle is not sufficient to explain the local observations because of the strong longitudinal dependence of the wave activity.
Resumo:
This study provides a continuous lateglacial and Holocene record of diatom silica oxygen isotope changes (delta O-18(DIAT)) in a subalpine lake sediment sequence obtained from the Retezat Mts (Taul dintre Brazi, 1740 m a.s.l.). This through-flow, shallow, high-altitude lake with a surface area of only 0.4 ha has short water residence time and is predominantly fed by snowmelt and rainwater. Its delta O-18(DIAT) record principally reflects the oxygen isotope composition of the winter and spring precipitation, as diatom blooms occur mainly in the spring and early summer. Hence, changes in delta O-18(DIAT) are interpreted as seasonal scale changes: in the amount of winter precipitation. Low oxygen isotope values (27-28.5 parts per thousand) occurred during the lateglacial until 12,300 cal BP, followed by a sharp increase thereafter. In the Holocene delta O-18(DIAT) values ranged from 29 to 31 parts per thousand until 3200 cal BP, followed by generally lower values during the late Holocene (27-30 parts per thousand). Short-term decreases in the isotopic values were found between 10,140-9570, 9000-8500, 7800-7300, 6300-5800, 5500-5000 and at 8015, 4400, 4000 cal BP. After 3200 cal BP a decreasing trend was visible with the lowest values between 3100-2500 and after 2100 cal BP The general trend in the record suggests that contribution of winter precipitation was generally lower between 11,680 and 3200 cal BP, followed by increased contribution during the last millennia. The late Holocene decrease in delta O-18(DIAT) shows good agreement with the speleothem delta O-18, lake level and testate amoebae records from the Carpathian Mountains that also display gradual delta O-18 decrease and lake level/mire water table level rise after 3200 cal BR Strong positive correlation with North Atlantic circulation and solar activity proxies, such as the Austrian and Hungarian speleothem records, furthermore suggested that short-term increases in the isotopic ratios in the early and mid Holocene are likely connectable to high solar activity phases and high frequency of positive North Atlantic Oscillation indexes that may have resulted in decreased winter precipitation in this region.
Resumo:
The North Atlantic jet stream during winter 2010 was unusually zonal, so the typically separated Atlantic and African jets were merged into one zonal jet. Moreover, the latitude–height structure and temporal variability of the North Atlantic jet during this winter were more characteristic of the North Pacific. This work examines the possibility of a flow regime change from an eddy-driven to a mixed eddy–thermally driven jet. A monthly jet zonality index is defined, which shows that a persistent merged jet state has occurred in the past, both at the end of the 1960s and during a few sporadic months. The anomalously zonal jet is found to be associated with anomalous tropical Pacific diabatic heating and eddy anomalies similar to those found during a negative North Atlantic Oscillation (NAO) state. A Lagrangian back-trajectory diagnosis of eight winters suggests the tropical Pacific is a source of momentum to the Atlantic and African jets and that this source was stronger during the winter of 2010. The results suggest that the combination of weak eddy variance and fluxes in the North Atlantic, along with strong tropical heating, act to push the jet toward a merged eddy–thermally driven state. The authors also find significant SST anomalies in the North Atlantic, which reinforce the anomalous zonal winds, particularly in the eastern Atlantic.