232 resultados para Transcatheter aortic valve replacement
Resumo:
Unfavorable immediate or delayed results after transcatheter aortic valve implantation (TAVI) may be a consequence of bioprosthesis malfunctioning, malpositioning, embolization, or degeneration. Deployment of a second valve within the first one implanted (TAVI-in-TAV) may be a potentially helpful therapeutic strategy.
Resumo:
Previous reports prove the safety and efficacy of cardiac pacing employing a guidewire in the left ventricle as unipolar pacing electrode. We describe the use of left ventricular guidewire pacing as an alternative to conventional transvenous temporary right ventricular pacing in the context of transcatheter aortic valve implantation. © 2012 Wiley Periodicals, Inc.
Resumo:
Transcatheter aortic valve implantation (TAVI) for the treatment of symptomatic severe aortic stenosis has emerged as an effective treatment for high risk patients. In 2002 TAVI was performed for the first time in a human by Alain Cribier, using an antegrade access approach via the femoral vein, crossing the intra-atrial septum after puncture and passing the native aortic valve in the direction of blood flow. This technically demanding approach was subsequently replaced by retrograde transfemoral arterial access. For patients with severe peripheral vascular disease or inadequately sized femoral arteries, the transapical route provides an alternative route with antegrade access to the aortic valve via puncture of the anterolateral wall of the left ventricle. The transsubclavian access approach using most frequently the left subclavian artery and direct transaortic access have been introduced more recently and attest to the versatility of TAVI in terms of access site. This article will focus on the different access site options available to operators, provide a step-by-step guide through the procedure, and a detailed description of the technological evolution of transcatheter heart valve systems.
Resumo:
The aim of the current Valve Academic Research Consortium (VARC)-2 initiative was to revisit the selection and definitions of transcatheter aortic valve implantation (TAVI) clinical endpoints to make them more suitable to the present and future needs of clinical trials. In addition, this document is intended to expand the understanding of patient risk stratification and case selection.
Resumo:
The aim of the current Valve Academic Research Consortium (VARC)-2 initiative was to revisit the selection and definitions of transcatheter aortic valve implantation (TAVI) clinical endpoints to make them more suitable to the present and future needs of clinical trials. In addition, this document is intended to expand the understanding of patient risk stratification and case selection.
Resumo:
The aim of the current Valve Academic Research Consortium (VARC)-2 initiative was to revisit the selection and definitions of transcatheter aortic valve implantation (TAVI)clinical endpoints to make them more suitable to the present and future needs of clinical trials. In addition, this document is intended to expand the understanding of patient risk stratification and case selection.
Resumo:
The aim of the current Valvular Academic Research Consortium (VARC)-2 initiative was to revisit the selection and definitions of transcatheter aortic valve implantation (TAVI)- clinical endpoints to make them more suitable to the present and future needs of clinical trials. In addition, this document is intended to expand understanding of patient risk stratification and case selection.
Resumo:
AIMS: The goal of this study was to assess the prevalence of left ventricular (LV) hypertrophy in patients with aortic stenosis late (>6 months) after aortic valve replacement and its impact on cardiac-related morbidity and mortality. METHODS AND RESULTS: In a single tertiary centre, echocardiographic data of LV muscle mass were collected. Detailed information of medical history and angiographic data were gathered. Ninety-nine of 213 patients (46%) had LV hypertrophy late (mean 5.8 +/- 5.4 years) after aortic valve replacement. LV hypertrophy was associated with impaired exercise capacity, higher New York Heart Association dyspnoea class, a tendency for more frequent chest pain expressed as higher Canadian Cardiovascular Society class, and more rehospitalizations. 24% of patients with normal LV mass vs. 39% of patients with LV hypertrophy reported cardiac-related morbidity (p = 0.04). In a multivariate logistic regression model, LV hypertrophy was an independent predictor of cardiac-related morbidity (odds ratio 2.31, 95% CI 1.08 to 5.41), after correction for gender, baseline ejection fraction, and coronary artery disease and its risk factors. Thirty seven deaths occurred during a total of 1959 patient years of follow-up (mean follow-up 9.6 years). Age at aortic valve replacement (hazard ratio 1.85, 95% CI 1.39 to 2.47, for every 5 years increase in age), coexisting coronary artery disease at the time of surgery (hazard ratio 3.36, 95% CI 1.31 to 8.62), and smoking (hazard ratio 4.82, 95% CI 1.72 to 13.45) were independent predictors of overall mortality late after surgery, but not LV hypertrophy. CONCLUSIONS: In patients with aortic valve replacement for isolated aortic stenosis, LV hypertrophy late after surgery is associated with increased morbidity.
Resumo:
Percutaneous valve replacement for severe aortic stenosis has shown to be an alternative treatment option for non-surgical candidates. We report on the first successful valve in valve procedure in an 80-year-old patient with a severe regurgitation of a degenerated aortic bioprosthesis using the Corevalve Revalving system.
Resumo:
OBJECTIVES: We sought to determine both the procedural performance and safety of percutaneous implantation of the second (21-French [F])- and third (18-F)-generation CoreValve aortic valve prosthesis (CoreValve Inc., Irvine, California). BACKGROUND: Percutaneous aortic valve replacement represents an emerging alternative therapy for high-risk and inoperable patients with severe symptomatic aortic valve stenosis. METHODS: Patients with: 1) symptomatic, severe aortic valve stenosis (area <1 cm2); 2) age > or =80 years with a logistic EuroSCORE > or =20% (21-F group) or age > or =75 years with a logistic EuroSCORE > or =15% (18-F group); or 3) age > or =65 years plus additional prespecified risk factors were included. Introduction of the 18-F device enabled the transition from a multidisciplinary approach involving general anesthesia, surgical cut-down, and cardiopulmonary bypass to a truly percutaneous approach under local anesthesia without hemodynamic support. RESULTS: A total of 86 patients (21-F, n = 50; 18-F, n = 36) with a mean valve area of 0.66 +/- 0.19 cm2 (21-F) and 0.54 +/- 0.15 cm2 (18-F), a mean age of 81.3 +/- 5.2 years (21-F) and 83.4 +/- 6.7 years (18-F), and a mean logistic EuroSCORE of 23.4 +/- 13.5% (21-F) and 19.1 +/- 11.1% (18-F) were recruited. Acute device success was 88%. Successful device implantation resulted in a marked reduction of aortic transvalvular gradients (mean pre 43.7 mm Hg vs. post 9.0 mm Hg, p < 0.001) with aortic regurgitation grade remaining unchanged. Acute procedural success rate was 74% (21-F: 78%; 18-F: 69%). Procedural mortality was 6%. Overall 30-day mortality rate was 12%; the combined rate of death, stroke, and myocardial infarction was 22%. CONCLUSIONS: Treatment of severe aortic valve stenosis in high-risk patients with percutaneous implantation of the CoreValve prosthesis is feasible and associated with a lower mortality rate than predicted by risk algorithms.
Resumo:
AIMS: To describe the procedural performance and 30-day outcomes following implantation using the 18 Fr CoreValve Revalving System (CRS) as part of the multicentre, expanded evaluation registry, 1-year after obtaining CE mark approval. METHODS AND RESULTS: Patients with symptomatic severe aortic stenosis and logistic Euroscore > or =15%, or age > or =75 years, or age > or =65 years associated with pre-defined risk factors, and for whom a physician proctor and a clinical specialist were in attendance during the implantation and who collected the clinical data, were included. From April 2007, to April 2008, 646 patients with a mean age of 81 +/- 6.6 years, mean aortic valve area 0.6 +/- 0.2 cm2, and logistic EuroSCORE of 23.1 +/- 13.8% were recruited. After valve implantation, the mean transaortic valve gradient decreased from 49.4 +/- 13.9 to 3 +/- 2 mmHg. All patients had paravalvular aortic regurgitation < or = grade 2. The rate of procedural success was 97%. The procedural mortality rate was 1.5%. At 30 days, the all-cause mortality rate (i.e, including procedural) was 8% and the combined rate of death, stroke and myocardial infarction was 9.3%. CONCLUSIONS: The results of this study demonstrate the high rate of procedural success and a low 30-day mortality in a large cohort of high-risk patients undergoing transcatheter aortic valve implantation (TAVI) with the CRS.