116 resultados para Tracheal airway
Resumo:
The airways of cystic fibrosis (CF) patients are characterised by neutrophils that release high amounts of elastase overwhelming the local antiprotease shield. Inhalation of alpha(1)-antitrypsin (AAT) may restore the protease-antiprotease balance and attenuate airway inflammation in CF airways. The aims of the present study were: 1) to assess the best deposition region for inhaled AAT by two different inhalation strategies; and 2) to examine the effect of 4 weeks of AAT inhalation on lung function, protease-antiprotease balance and airway inflammation in CF patients. In a prospective, randomised study, 52 CF patients received a daily deposition by inhalation of 25 mg AAT for 4 weeks targeting their peripheral or bronchial compartment. The levels of elastase activity, AAT, pro-inflammatory cytokines, neutrophils, immunoglobulin G fragments and the numbers of Pseudomonas aeruginosa were assessed in induced sputum before and after the inhalation period. Inhalation of AAT increased AAT levels and decreased the levels of elastase activity, neutrophils, pro-inflammatory cytokines and the numbers of P. aeruginosa. However, it had no effect on lung function. No difference was found between the peripheral and bronchial inhalation mode. In conclusion, although no effect on lung function was observed, the clear reduction of airway inflammation after alpha(1)-antitrypsin treatment may precede pulmonary structural changes. The alpha(1)-antitrypsin deposition region may play a minor role for alpha(1)-antitrypsin inhalation in cystic fibrosis patients.
Resumo:
BACKGROUND: Environment and genetics influence the manifestation of recurrent airway obstruction (RAO), but the associations of specific factors with mild, moderate, and severe clinical signs are unknown. HYPOTHESIS: We hypothesized that sire, feed, bedding, time outdoors, sex, and age are associated with clinical manifestations of mild, moderate, and severe lower airway disease. ANIMALS: Direct offspring of 2 RAO-affected Warmblood stallions (F1S1, n = 172; F1S2, n = 135); maternal half-siblings of F1S1 (mHSS1, n = 66); and an age-matched, randomly chosen control group (CG, n = 33). METHODS: A standardized questionnaire was used to assess potential risk factors and to establish a horse owner assessed respiratory signs index (HOARSI 1-4, from healthy to severe) according to clinical signs of lower airway disease. RESULTS: More F1S1 and F1S2 horses showed moderate to severe clinical signs (HOARSI 3 and HOARSI 4 combined, 29.6 and 27.3%, respectively) compared with CG and mHSS1 horses (9.1 and 6.2%, respectively; contingency table overall test, P < .001). Sire, hay feeding, and age (in decreasing order of strength) were associated with more severe clinical signs (higher HOARSI), more frequent coughing, and nasal discharge. CONCLUSIONS AND CLINICAL RELEVANCE: There is a genetic predisposition and lesser but also marked effects of hay feeding and age on the manifestation of moderate to severe clinical signs, most markedly on coughing frequency. In contrast, mild clinical signs were not associated with sire or hay feeding in our populations.
Resumo:
REASONS FOR STUDY: Equine recurrent airway obstruction (RAO) is probably dependent on a complex interaction of genetic and environmental factors and shares many characteristic features with human asthma. Interleukin 4 receptor a chain (IL4RA) is a candidate gene because of its role in the development of human asthma, confirmation of this association is therefore required. METHODS: The equine BAC clone containing the IL4RA gene was localised to ECA13q13 by the FISH method. Microsatellite markers in this region were investigated for possible association and linkage with RAO in 2 large Warmblood halfsib families. Based on a history of clinical signs (coughing, nasal discharge, abnormal breathing and poor performance), horses were classified in a horse owner assessed respiratory signs index (HOARSI 1-4: from healthy, mild, moderate to severe signs). Four microsatellite markers (AHT133, LEX041, VHL47, ASB037) were analysed in the offspring of Sire 1 (48 unaffected HOARSI 1 vs. 59 affected HOARSI 2-4) and Sire 2 (35 HOARSI 1 vs. 50 HOARSI 2-4), age 07 years. RESULTS: For both sires haplotypes could be established in the order AHT133-LEXO47-VHL47-ASB37. The distances in this order were estimated to be 2.9, 0.9 and 2.3 centiMorgans, respectively. Haplotype association with mild to severe clinical signs of chronic lower airway disease (HOARSI 2-4) was significant in the offspring of Sire 1 (P = 0.026) but not significant for the offspring of Sire 2 (P = 0.32). Linkage analysis showed the ECA13q13 region containing IL4RA to be linked to equine chronic lower airway disease in one family (P<0.01), but not in the second family. CONCLUSIONS: This supports a genetic background for equine RAO and indicates that IL4RA is a candidate gene with possible locus heterogeneity for this disease. POTENTIAL RELEVANCE: Identification of major genes for RAO may provide a basis for breeding and individual prevention for this important disease.
Resumo:
IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.
Resumo:
BACKGROUND: The relationship between airway structural changes and inflammation is unclear in early cystic fibrosis (CF) lung disease. A study was undertaken to determine changes in airway remodelling in children with CF compared with appropriate disease and healthy controls. METHODS: Bronchoalveolar lavage and endobronchial biopsy were performed in a cross-sectional study of 43 children with CF (aged 0.3-16.8 years), 7 children with primary ciliary dyskinesia (PCD), 26 with chronic respiratory symptoms (CRS) investigated for recurrent infection and/or cough and 7 control children with no lower airway symptoms. Inflammatory cells, cytokines, proteases and matrix constituents were measured in bronchoalveolar lavage fluid (BALF). Reticular basement membrane (RBM) thickness was measured on biopsy specimens using light microscopy. RESULTS: Increased concentrations of elastin, glycosaminoglycans and collagen were found in BALF from children with CF compared with the CRS group and controls, each correlating positively with age, neutrophil count and proteases (elastase activity and matrix metalloproteinase-9 (MMP-9) concentration). There were significant negative correlations between certain of these and pulmonary function (forced expiratory volume in 1 s) in the CF group (elastin: r = -0.45, p<0.05; MMP-9:TIMP-1 ratio: r = -0.47, p<0.05). Median RBM thickness was greater in the CF group than in the controls (5.9 microm vs 4.0 microm, p<0.01) and correlated positively with levels of transforming growth factor-beta(1) (TGF-beta(1); r = 0.53, p = 0.01), although not with other inflammatory markers or pulmonary function. CONCLUSIONS: This study provides evidence for two forms of airway remodelling in children with CF: (1) matrix breakdown, related to inflammation, proteolysis and impaired pulmonary function, and (2) RBM thickening, related to TGF-beta(1) concentration but independent of other markers of inflammation.
Resumo:
ABSTRACT: BACKGROUND: Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. RESULTS: Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 mum) and nano-sized (0.078 mum) polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 mum) and titanium dioxide (0.02-0.03 mum) nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials) to induce a cellular response was determined by measurements of the tumour necrosis factor-alpha in the supernatants. We measured a 2-3 fold increase of tumour necrosis factor-alpha in the supernatants after applying 1 mum polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. CONCLUSION: Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular responses to particle exposure as measured by the generation of tumour necrosis factor-alpha.
Resumo:
It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.
Resumo:
Clinical efficacy of aerosol therapy in premature newborns depends on the efficiency of delivery of aerosolized drug to the bronchial tree. To study the influence of various anatomical, physical, and physiological factors on aerosol delivery in preterm newborns, it is crucial to have appropriate in vitro models, which are currently not available. We therefore constructed the premature infant nose throat-model (PrINT-Model), an upper airway model corresponding to a premature infant of 32-wk gestational age by three-dimensional (3D) reconstruction of a three-planar magnetic resonance imaging scan and subsequent 3D-printing. Validation was realized by visual comparison and comparison of total airway volume. To study the feasibility of measuring aerosol deposition, budesonide was aerosolized through the cast and lung dose was expressed as percentage of nominal dose. The airway volumes of the initial magnetic resonance imaging and validation computed tomography scan showed a relative deviation of 0.94%. Lung dose at low flow (1 L/min) was 61.84% and 9.00% at high flow (10 L/min), p < 0.0001. 3D-reconstruction provided an anatomically accurate surrogate of the upper airways of a 32-wk-old premature infant, making the model suitable for future in vitro testing.
Resumo:
BACKGROUND: The surfactant proteins B (SP-B) and C (SP-C) are important for the stability and function of the alveolar surfactant film. Their involvement and down-regulation in inflammatory processes has recently been proposed, but their level during neutrophilic human airway diseases are not yet known. METHODS: We used 1D-electrophoresis and Western blotting to determine the concentrations and molecular forms of SP-B and SP-C in bronchoalveolar lavage (BAL) fluid of children with different inflammatory airway diseases. 21 children with cystic fibrosis, 15 with chronic bronchitis and 14 with pneumonia were included and compared to 14 healthy control children. RESULTS: SP-B was detected in BAL of all 64 patients, whereas SP-C was found in BAL of all but 3 children; those three BAL fluids had more than 80% neutrophils, and in two patients, who were re-lavaged later, SP-C was then present and the neutrophil count was lower. SP-B was mainly present as a dimer, SP-C as a monomer. For both qualitative and quantitative measures of SP-C and SP-B, no significant differences were observed between the four evaluated patient groups. CONCLUSION: Concentration or molecular form of SP-B and SP-C is not altered in BAL of children with different acute and chronic inflammatory lung diseases. We conclude that there is no down-regulation of SP-B and SP-C at the protein level in inflammatory processes of neutrophilic airway disease.
Resumo:
RATIONALE: Structural alterations to airway smooth muscle (ASM) are a feature of asthma and cystic fibrosis (CF) in adults. OBJECTIVES: We investigated whether increase in ASM mass is already present in children with chronic inflammatory lung disease. METHODS: Fiberoptic bronchoscopy was performed in 78 children (median age [IQR], 11.3 [8.5-13.8] yr): 24 with asthma, 27 with CF, 16 with non-CF bronchiectasis (BX), and 11 control children without lower respiratory tract disease. Endobronchial biopsy ASM content and myocyte number and size were quantified using stereology. MEASUREMENTS AND MAIN RESULTS: The median (IQR) volume fraction of subepithelial tissue occupied by ASM was increased in the children with asthma (0.27 [0.12-0.49]; P < 0.0001), CF (0.12 [0.06-0.21]; P < 0.01), and BX (0.16 [0.04-0.21]; P < 0.01) compared with control subjects (0.04 [0.02-0.05]). ASM content was related to bronchodilator responsiveness in the asthmatic group (r = 0.66, P < 0.01). Median (IQR) myocyte number (cells per mm(2) of reticular basement membrane) was 8,204 (5,270-11,749; P < 0.05) in children with asthma, 4,504 (2,838-8,962; not significant) in children with CF, 4,971 (3,476-10,057; not significant) in children with BX, and 1,944 (1,596-6,318) in control subjects. Mean (SD) myocyte size (mum(3)) was 3,344 (801; P < 0.01) in children with asthma, 3,264 (809; P < 0.01) in children with CF, 3,177 (873; P < 0.05) in children with BX, and 1,927 (386) in control subjects. In all disease groups, the volume fraction of ASM in subepithelial tissue was related to myocyte number (asthma: r = 0.84, P < 0.001; CF: r = 0.81, P < 0.01; BX: r = 0.95, P < 0.001), but not to myocyte size. CONCLUSIONS: Increases in ASM (both number and size) occur in children with chronic inflammatory lung diseases that include CF, asthma, and BX.
Resumo:
The potential health effects of inhaled engineered nanoparticles are almost unknown. To avoid and replace toxicity studies with animals, a triple cell co-culture system composed of epithelial cells, macrophages and dendritic cells was established, which simulates the most important barrier functions of the epithelial airway. Using this model, the toxic potential of titanium dioxide was assessed by measuring the production of reactive oxygen species and the release of tumour necrosis factor alpha. The intracellular localisation of titanium dioxide nanoparticles was analyzed by energy filtering transmission electron microscopy. Titanium dioxide nanoparticles were detected as single particles without membranes and in membrane-bound agglomerates. Cells incubated with titanium dioxide particles showed an elevated production of reactive oxygen species but no increase of the release of tumour necrosis factor alpha. Our in vitro model of the epithelial airway barrier offers a valuable tool to study the interaction of particles with lung cells at a nanostructural level and to investigate the toxic potential of nanoparticles.
Resumo:
BACKGROUND: Several epidemiological studies show that inhalation of particulate matter may cause increased pulmonary morbidity and mortality. Of particular interest are the ultrafine particles that are particularly toxic. In addition more and more nanoparticles are released into the environment; however, the potential health effects of these nanoparticles are yet unknown. OBJECTIVES: To avoid particle toxicity studies with animals many cell culture models have been developed during the past years. METHODS: This review focuses on the most commonly used in vitro epithelial airway and alveolar models to study particle-cell interactions and particle toxicity and highlights advantages and disadvantages of the different models. RESULTS/CONCLUSION: There are many lung cell culture models but none of these models seems to be perfect. However, they might be a great tool to perform basic research or toxicity tests. The focus here is on 3D and co-culture models, which seem to be more realistic than monocultures.