64 resultados para Titration and off-gas analysis
Resumo:
By switching the level of analysis and aggregating data from the micro-level of individual cases to the macro-level, quantitative data can be analysed within a more case-based approach. This paper presents such an approach in two steps: In a first step, it discusses the combination of Social Network Analysis (SNA) and Qualitative Comparative Analysis (QCA) in a sequential mixed-methods research design. In such a design, quantitative social network data on individual cases and their relations at the micro-level are used to describe the structure of the network that these cases constitute at the macro-level. Different network structures can then be compared by QCA. This strategy allows adding an element of potential causal explanation to SNA, while SNA-indicators allow for a systematic description of the cases to be compared by QCA. Because mixing methods can be a promising, but also a risky endeavour, the methodological part also discusses the possibility that underlying assumptions of both methods could clash. In a second step, the research design presented beforehand is applied to an empirical study of policy network structures in Swiss politics. Through a comparison of 11 policy networks, causal paths that lead to a conflictual or consensual policy network structure are identified and discussed. The analysis reveals that different theoretical factors matter and that multiple conjunctural causation is at work. Based on both the methodological discussion and the empirical application, it appears that a combination of SNA and QCA can represent a helpful methodological design for social science research and a possibility of using quantitative data with a more case-based approach.
Resumo:
Characterization of dissolved CO2 and alkane gas in clayrocks may help assessing the confinement properties of geological barriers considered as potential host rocks for a deep geological disposal as well as for caprocks of gas storages. A monitoring of alkanes with CO2, combined with carbon isotopes was performed on core samples coming from Underground Research Laboratories (Bure, Mont Terri, Tournemire) and the Schlattingen borehole in France and Switzerland. Composition of hydrocarbon gas and delta C-13 of methane strongly suggest a dominant thermogenic origin of methane which is mixed with a bacterial origin for the Toarcian shales, Pliensbachien and Callovian-Oxfordian clayrocks. Results also evidence the contrasted behavior of CO2, which is controlled by chemical equilibrium between pore water and carbonate mineralogy, compared to the alkanes which are present in the porosity as a stock of dissolved gases which can be depleted during degassing experiments. (C) 2015 The Authors. Published by Elsevier B.V.