66 resultados para Tissue repair


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meniscal injuries can occur secondary to trauma or be instigated by the changes in knee-joint function that are associated with aging, osteo- and rheumatoid arthritis, disturbances in gait and obesity. Sixty per cent of persons over 50 years of age manifest signs of meniscal pathology. The surgical and arthroscopic measures that are currently implemented to treat meniscal deficiencies bring only transient relief from pain and effect but a temporary improvement in joint function. Although tissue-engineering-based approaches to meniscal repair are now being pursued, an appropriate in-vitro model has not been conceived. The aim of this study was to develop an organ-slice culturing system to simulate the repair of human meniscal lesions in vitro. The model consists of a ring of bovine meniscus enclosing a chamber that represents the defect and reproduces its sequestered physiological microenvironment. The defect, which is closed with a porous membrane, is filled with fragments of synovial tissue, as a source of meniscoprogenitor cells, and a fibrin-embedded, calcium-phosphate-entrapped depot of the meniscogenic agents BMP-2 and TGF-ß1. After culturing for 2 to 6 weeks, the constructs were evaluated histochemically and histomorphometrically, as well as immunohistochemically for the apoptotic marker caspase 3 and collagen types I and II. Under the defined conditions, the fragments of synovium underwent differentiation into meniscal tissue, which bonded with the parent meniscal wall. Both the parent and the neoformed meniscal tissue survived the duration of the culturing period without significant cell losses. The concept on which the in-vitro system is based was thus validated. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to compare facial development in subjects with complete unilateral cleft lip and palate (CUCLP) treated with two different surgical protocols. Lateral cephalometric radiographs of 61 patients (42 boys, 19 girls; mean age, 10.9 years; SD, 1) treated consecutively in Warsaw with one-stage repair and 61 age-matched and sex-matched patients treated in Oslo with two-stage surgery were selected to evaluate craniofacial morphology. On each radiograph 13 angular and two ratio variables were measured in order to describe hard and soft tissues of the facial region. The analysis showed that differences between the groups were limited to hard tissues – the maxillary prominence in subjects from the Warsaw group was decreased by almost 4° in comparison with the Oslo group (sella-nasion-A-point (SNA) = 75.3° and 79.1°, respectively) and maxillo-mandibular morphology was less favorable in the Warsaw group than the Oslo group (ANB angle = 0.8° and 2.8°, respectively). The soft tissue contour was comparable in both groups. In conclusion, inter-group differences suggest a more favorable outcome in the Oslo group. However, the distinctiveness of facial morphology in background populations (ie, in Poles and Norwegians) could have contributed to the observed results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurrent intervertebral disc (IVD) herniation and degenerative disc disease have been identified as the most important factors contributing to persistent pain and disability after surgical discectomy. An annulus fibrosus (AF) closure device that provides immediate closure of the AF rupture, restores disc height, reduces further disc degeneration and enhances self-repair capacities is an unmet clinical need. In this study, a poly(trimethylene carbonate) (PTMC) scaffold seeded with human bone marrow derived mesenchymal stromal cells (MSCs) and covered with a poly(ester-urethane) (PU) membrane was assessed for AF rupture repair in a bovine organ culture annulotomy model under dynamic load for 14 days. PTMC scaffolds combined with the sutured PU membrane restored disc height of annulotomized discs and prevented herniation of nucleus pulposus (NP) tissue. Implanted MSCs showed an up-regulated gene expression of type V collagen, a potential AF marker, indicating in situ differentiation capability. Furthermore, MSCs delivered within PTMC scaffolds induced an up-regulation of anabolic gene expression and down-regulation of catabolic gene expression in adjacent native disc tissue. In conclusion, the combined biomaterial and cellular approach has the potential to hinder herniation of NP tissue, stabilize disc height, and positively modulate cell phenotype of native disc tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Successful repair of defects in the avascular zone of meniscus remains a challenge in orthopedics. This proof of concept study aimed to investigate a guided tissue regeneration approach for treatment of tears in meniscus avascular zone in a goat model. DESIGN Full-depth longitudinal tear was created in the avascular zone of the meniscus and sutured. In the two treatment groups, porcine collagen membrane was wrapped around the tear without (CM) or with injection of expanded autologous chondrocytes (CM+cells), whereas in the control group the tear remained only sutured. Gait recovery was evaluated during the entire follow-up period. On explantation at 3 and 6 months, macroscopic gross inspection assessed healing of tears, degradation of collagen membrane, potential signs of inflammation, and osteoarthritic changes. Microscopic histology scoring criteria were developed to evaluate healing of tears, the cellular response, and the inflammatory response. RESULTS Gait recovery suggested protective effect of collagen membrane and was supported by macroscopical evaluation where improved tear healing was noted in both treated groups. Histology scoring in CM compared to suture group revealed an increase in tear margins contact, newly formed connective tissue between margins, and cell formations surrounded with new matrix after 3 months yet not maintained after 6 months. In contrast, in the CM+cells group these features were observed after 3 and 6 months. CONCLUSIONS A transient, short-term guided tissue regeneration of avascular meniscal tears occurred upon application of collagen membrane, whereas addition of expanded autologous chondrocytes supported more sustainable longer term tear healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Around 80% of people are affected by low back pain at least once in their life, often caused by trauma provoking intervertebral disc (IVD) herniation and/or IVD degeneration. Apart from some promising approaches for nucleus pulposus repair, so far no treatment or repair is available for the outer fibrous tissue, annulus fibrosus (AF). We aimed for sealing and repairing an AF injury in a bovine IVD organ culture model in vitro over 14 days under different loading conditions. For this purpose, a silk fleece composite from Bombyx mori silk was combined with genipin-enhanced fibrin hydrogel [1]. METHODS: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue, followed by cutting out the IVDs [2]. Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described. On the next day, injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35- 55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d. Complex loading was applied by a custom built 2 degree of freedom bioreactor [3]. After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy-proline) were determined. Finally, real-time qPCR of major IVD marker genes was performed. RESULTS: The silk seal closing the injury site could successfully withstand the forces of all three loading conditions with no misplacement over the two weeks’ culture. Nevertheless, disc height of the repaired discs did not significantly differ from the injured group. The disc phenotype could be maintained as demonstrated by biochemical analysis of gene expression, cell activity, DNA-, collagen- and GAG content. The silk itself was evaluated to be highly biocompatible for hMSC, as revealed by cytotoxicity assays. DISCUSSION & CONCLUSIONS: The silk can be considered a highly-elastic and biocompatible material for AF closure and the genipin-enhanced fibrin hydrogel has also good biomechanical properties. However, the cyto-compatibility of genipin seems rather poor and other hydrogels and/or cross-linkers should be looked into. REFERENCES: 1 C.C. Guterl et al. (2014) Characterization of Mechanics and Cytocompatibility of Fibrin Genipin Annulus Fibrosus Sealant with the Addition of Cell Adhesion Molecules, Tissue Eng Part A 2 S.C. Chan, B. Gantenbein-Ritter (2012) Preparation of intact bovine tail intervertebral discs for organ culture, J Vis Exp 3 B Gantenbein et al. (2015) Organ Culture Bioreactors - Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy, Curr Stem Cell Res Ther [epub ahead of print] ACKNOWLEDGEMENTS: This project is supported by the Gebert Rüf Stiftung project # GRS-028/13.