65 resultados para TRANSCRIPTION TERMINATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H2O2 biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H2O2 pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant’s metabolism towards an appropriate response to chewing or piercing/sucking insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which herbivore-attacked plants activate their defenses are well studied. By contrast, little is known about the regulatory mechanisms that allow them to control their defensive investment and avoid a defensive overshoot. We characterized a rice (Oryza sativa) WRKY gene, OsWRKY53, whose expression is rapidly induced upon wounding and induced in a delayed fashion upon attack by the striped stem borer (SSB) Chilo suppressalis. The transcript levels of OsWRKY53 are independent of endogenous jasmonic acid but positively regulated by the mitogen-activated protein kinases OsMPK3/OsMPK6. OsWRKY53 physically interacts with OsMPK3/OsMPK6 and suppresses their activity in vitro. By consequence, it modulates the expression of defensive, MPK-regulated WRKYs and thereby reduces jasmonic acid, jasmonoyl-isoleucine, and ethylene induction. This phytohormonal reconfiguration is associated with a reduction in trypsin protease inhibitor activity and improved SSB performance. OsWRKY53 is also shown to be a negative regulator of plant growth. Taken together, these results show that OsWRKY53 functions as a negative feedback modulator of MPK3/MPK6 and thereby acts as an early suppressor of induced defenses. OsWRKY53 therefore enables rice plants to control the magnitude of their defensive investment during early signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Review of Premature Termination in Psychotherapy: Strategies for Engaging Clients and Improving Outcomes by Joshua K. Swift and Roger P. Greenberg Washington, DC: American Psychological Association. 2015. 212 pp, ISBN 978-1-4338-1801- 1. $69.95 http://dx.doi.org/10.1037/a0038612 Premature Termination in Psychotherapy: Strategies for Engaging Clients and Improving Outcomes is one of the very best examples of the new generation of psychotherapy development. Based on rigorous research findings and a deep look into the preexisting literature, this book presents practical guidelines to understand premature termination and provides evidence-based strategies for how to engage patients in treatment. It will especially be a highlight for practitioners who are interested in a broad insight of the overall empirical literature. For graduate students in clinical and counseling psychology, this book might be an excellent prototype for how to bring rigorous quantitative research and convenient practice examples together.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinct glial cell types of the vertebrate peripheral nervous system (PNS) are derived from the neural crest. Here we show that the expression of the Ets domain transcription factor Erm distinguishes satellite glia from Schwann cells beginning early in rat PNS development. In developing dorsal root ganglia (DRG), Erm is present both in presumptive satellite glia and in neurons. In contrast, Erm is not detectable at any developmental stage in Schwann cells in peripheral nerves. In addition, Erm is downregulated in DRG-derived glia adopting Schwann cell traits in culture. Thus, Erm is the first described transcription factor expressed in satellite glia but not in Schwann cells. In culture, the Neuregulin1 (NRG1) isoform GGF2 maintains Erm expression in presumptive satellite cells and reinduces Erm expression in DRG-derived glia but not in Schwann cells from sciatic nerve. These data demonstrate that there are intrinsic differences between these glial subtypes in their response to NRG1 signaling. In neural crest cultures, Erm-positive progenitor cells give rise to two distinct glial subtypes: Erm-positive, Oct-6-negative satellite glia in response to GGF2, and Erm-negative, Oct-6-positive Schwann cells in the presence of serum and the adenylate cyclase activator forskolin. Thus, Erm-positive neural crest-derived progenitor cells and presumptive satellite glia are able to acquire Schwann cell features. Given the in vivo expression of Erm in peripheral ganglia, we suggest that ganglionic Erm-positive cells may be precursors of Schwann cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevailing view of the nuclear genetic code is that it is largely frozen and unambiguous. Flexibility in the nuclear genetic code has been demonstrated in ciliates that reassign standard stop codons to amino acids, resulting in seven variant genetic codes, including three previously undescribed ones reported here. Surprisingly, in two of these species, we find efficient translation of all 64 codons as standard amino acids and recognition of either one or all three stop codons. How, therefore, does the translation machinery interpret a “stop” codon? We provide evidence, based on ribosomal profiling and “stop” codon depletion shortly before coding sequence ends, that mRNA 3′ ends may contribute to distinguishing stop from sense in a context-dependent manner. We further propose that such context-dependent termination/readthrough suppression near transcript ends enables genetic code evolution.