67 resultados para TRANSCRIPTION FACTORS
Resumo:
PURPOSE In acute myeloid leukemia (AML), the transcription factors CEBPA and KLF4 as well as the universal tumor suppressor p53 are frequently deregulated. Here, we investigated the extent of dysregulation, the molecular interactions, and the mechanisms involved. EXPERIMENTAL DESIGN One hundred ten AML patient samples were analyzed for protein levels of CEBPA, KLF4, p53, and p53 modulators. Regulation of CEBPA gene expression by KLF4 and p53 or by chemical p53 activators was characterized in AML cell lines. RESULTS We found that CEBPA gene transcription can be directly activated by p53 and KLF4, suggesting a p53-KLF4-CEBPA axis. In AML patient cells, we observed a prominent loss of p53 function and concomitant reduction of KLF4 and CEBPA protein levels. Assessment of cellular p53 modulator proteins indicated that p53 inactivation in leukemic cells correlated with elevated levels of the nuclear export protein XPO1/CRM1 and increase of the p53 inhibitors MDM2 and CUL9/PARC in the cytoplasm. Finally, restoring p53 function following treatment with cytotoxic chemotherapy compounds and p53 restoring non-genotoxic agents induced CEBPA gene expression, myeloid differentiation, and cell-cycle arrest in AML cells. CONCLUSIONS The p53-KLF4-CEBPA axis is deregulated in AML but can be functionally restored by conventional chemotherapy and novel p53 activating treatments. Clin Cancer Res; 22(3); 746-56. ©2015 AACR.
Resumo:
Calreticulin (CALR) is a highly conserved, multifunctional protein involved in a variety of cellular processes including the maintenance of intracellular calcium homeostasis, proper protein folding, differentiation and immunogenic cell death. More recently, a crucial role for CALR in the pathogenesis of certain hematologic malignancies was discovered: in clinical subgroups of acute myeloid leukemia, CALR overexpression mediates a block in differentiation, while somatic mutations have been found in the majority of patients with myeloproliferative neoplasms with nonmutated Janus kinase 2 gene (JAK2) or thrombopoietin receptor gene (MPL). However, the mechanisms underlying CALR promoter activation have insufficiently been investigated so far. By dissecting the core promoter region, we could identify a functional TATA-box relevant for transcriptional activation. In addition, we characterized two evolutionary highly conserved cis-regulatory modules (CRMs) within the proximal promoter each composed of one binding site for the transcription factors SP1 and SP3 as well as for the nuclear transcription factor Y (NFY) and we verified binding of these factors to their cognate sites in vitro and in vivo.
Resumo:
Small cell lung cancer (SCLC) accounts for 15% of lung cancer cases and is associated with a dismal prognosis. Standard therapeutic regimens have been improved over the past decades, but without a major impact on patient survival. The development of targeted therapies based on a better understanding of the molecular basis of the disease is urgently needed. At the genetic level, SCLC appears very heterogenous, although somatic mutations targeting classical oncogenes and tumor suppressors have been reported. SCLC also possesses somatic mutations in many other cancer genes, including transcription factors, enzymes involved in chromatin modification, receptor tyrosine kinases and their downstream signaling components. Several avenues have been explored to develop targeted therapies for SCLC. So far, however, there has been limited success with these targeted approaches in clinical trials. Further progress in the optimization of targeted therapies for SCLC will require the development of more personalized approaches for the patients.
Resumo:
PURPOSE OF REVIEW Progressive cardiac conduction disorder (PCCD) is an inherited cardiac disease that may present as a primary electrical disease or be associated with structural heart disease. In this brief review, we present recent clinical, genetic, and molecular findings relating to PCCD. RECENT FINDINGS Inherited PCCD in structurally normal hearts has been found to be linked to genetic variants in the ion channel genes SCN5A, SCN1B, SCN10A, TRPM4, and KCNK17, as well as in genes coding for cardiac connexin proteins. In addition, several SCN5A mutations lead to 'cardiac sodium channelopathy overlap syndrome'. Other genes coding for cardiac transcription factors, such as NKX2.5 and TBX5, are involved in the development of the cardiac conduction system and in the morphogenesis of the heart. Mutations in these two genes have been shown to cause cardiac conduction disorders associated with various congenital heart defects. SUMMARY PCCD is a hereditary syndrome, and genetic variants in multiple genes have been described to date. Genetic screening and identification of the causal mutation are crucial for risk stratification and family counselling.
Resumo:
Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus.
Resumo:
Theileria parva and T. annulata provide intriguing models for the study of parasite-host interactions. Both parasites possess the unique property of being able to transform the cells they infect; T. parva transforms T and B cells, whereas T. annulata affects B cells and monocytes/macrophages. Parasitized cells do not require antigenic stimulation or exogenous growth factors and acquire the ability to proliferate continuously. In vivo, parasitized cells undergo clonal expansion and infiltrate both lymphoid and non-lymphoid tissues of the infected host. Theileria-induced transformation is entirely reversible and is accompanied by the expression of a wide range of different lymphokines and cytokines, some of which may contribute to proliferation or may enhance spread and survival of the parasitized cell in the host. The presence of the parasite in the host-cell cytoplasm modulates the state of activation of a number of signal transduction pathways. This, in turn, leads to the activation of transcription factors, including nuclear factor-kappa B, which appear to be essential for the survival of Theileria-transformed T cells.
Resumo:
The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.