66 resultados para Streptococcus oralis
Resumo:
Streptococcus pneumoniaebacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement.
Resumo:
Beta-hemolytic streptococci of groups C and G, designated as Streptococcus dysgalactiae (SD), can cause severe and recurring invasive infections. In this case-control study, we aimed to identify clinical and molecular risk factors for recurrence of SD bacteremia. Twenty-two cases of recurrent SD bacteremia were identified, and median time between episodes was 6 months. The most frequent clinical manifestation was skin and soft tissue infection. Cases and 92 controls, with single-episode SD bacteremia, showed similar demographics, had similar Charlson comorbidity scores, and had similar clinical presentations. Thirty-day fatality was 13% among controls, whereas none of 22 cases died. In 19 cases (86%), the same emm type was encountered in both episodes. SD isolates from recurrent episodes and from single episodes had a similar emm type distribution. Thus, we did not identify clinical risk factors for recurrences. The high proportion of identical emm types in recurrent episodes indicates a host-specific colonization.
Resumo:
Concurrent analysis of antibiotic resistance of colonising and invasive Streptococcus pneumoniae gives a more accurate picture than looking at either of them separately. Therefore, we analysed 2,129 non-invasive and 10,996 invasive pneumococcal isolates from Switzerland from 2004 to 2014, which spans the time before and after the introduction of the heptavalent (PCV7) and 13-valent (PCV13) conjugated pneumococcal polysaccharide vaccines. Serotype/serogroup information was linked with all antibiotic resistance profiles. During the study period, the proportion of non-susceptible non-invasive and invasive isolates significantly decreased for penicillin, ceftriaxone, erythromycin and trimethoprim/sulfamethoxazole (TMP-SMX). This was most apparent in non-invasive isolates from study subjects younger than five years (penicillin (p = 0.006), erythromycin (p = 0.01) and TMP-SMX (p = 0.002)). Resistant serotypes/serogroups included in PCV7 and/or PCV13 decreased and were replaced by non-PCV13 serotypes (6C and 15B/C). Serotype/serogroup-specific antibiotic resistance rates were comparable between invasive and non-invasive isolates. Adjusted odds ratios of serotype/serogroup-specific penicillin resistance were significantly higher in the west of Switzerland for serotype 6B (1.8; 95% confidence interval (CI): 1.4-4.8), 9V (3.4; 95% CI: 2.0-5.7), 14 (5.3; 95% CI: 3.8-7.5), 19A (2.2; 95% CI: 1.6-3.1) and 19F (3.1; 95% CI: 2.1-4.6), probably due to variations in the antibiotic consumption.
Resumo:
The aims of the current study were to describe presence and clinical role over time of Streptococcus pluranimalium isolated in milk samples of Mediterranean buffalo (MB). Two hundred composite milk samples originating from 40 primiparous MB were collected at 10, 30, 60, 90, and 150d in milk (DIM) and from 20 pluriparous MB at 77 to 120 DIM. Milk samples were used for analysis of somatic cell counts, bacteriological cultures, and identification (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry). Nine of 200 (4.5%) samples of primiparous MB and 3 of 20 (15%) samples of pluriparous MB were positive for Strep. pluranimalium. The prevalence of the bacterium in primipari was 0% (0/40) at 10, 30, and 150 DIM, whereas it was 5 (2/40) and 17.5% (7/40) at 60 and 90 DIM, respectively. Eight primipari were positive only once, whereas 1 was positive at 2 different samplings. Mono-infection was not detected in any of the age categories or udder health status. Infections were transient in primipari. Clinical mastitis was observed in primipari once at 90 DIM, subclinical mastitis detected twice in the same animals at 60 and 90 DIM, and intramammary infections were diagnosed 1 and 5 times at 60 and 90 DIM in primipari, respectively, whereas 3 infections were diagnosed in pluripari. The clinical reflections demonstrate for the first time the presence of Strep. pluranimalium in MB and its association with different udder health status. Nevertheless, it cannot be excluded that the bacterium may simply follow a pattern of commensal or opportunistic behavior, taking advantage of a preexisting bacterial udder infection.
Resumo:
BACKGROUND: Streptococcus pneumoniae causes several human diseases, including pneumonia and meningitis, in which pathology is associated with an excessive inflammatory response. A major inducer of this response is the cholesterol dependent pneumococcal toxin, pneumolysin. Here, we measured the amount of inflammatory cytokine CXCL8 (interleukin (IL)-8) by ELISA released by human nasopharyngeal epithelial (Detroit 562) cells as inflammatory response to a 24 h exposure to different pneumococcal strains. RESULTS: We found pneumolysin to be the major factor influencing the CXCL8 response. Cholesterol and sphingomyelin-containing liposomes designed to sequester pneumolysin were highly effective at reducing CXCL8 levels from epithelial cells exposed to different clinical pneumococcal isolates. These liposomes also reduced CXCL8 response from epithelial cells exposed to pneumolysin knock-out mutants of S. pneumoniae indicating that they also reduce the CXCL8-inducing effect of an unidentified pneumococcal virulence factor, in addition to pneumolysin. CONCLUSION: The results indicate the potential of liposomes in attenuating excessive inflammation as a future adjunctive treatment of pneumococcal diseases.