71 resultados para Stability of ships
Resumo:
Stability of radiolabelled cholecystokinin 2 (CCK2) receptor targeting peptides has been a major limitation in the use of such radiopharmaceuticals especially for targeted radionuclide therapy applications, e.g. for treatment of medullary thyroid carcinoma (MTC). The purpose of this study was to compare the in vitro stability of a series of peptides binding to the CCK2 receptor [selected as part of the COST Action on Targeted Radionuclide Therapy (BM0607)] and to identify major cleavage sites.
Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings
Resumo:
Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.
Resumo:
AIM: To investigate the significance of the initial stability of dental implants for the establishment of osseointegration in an experimental capsule model for bone augmentation. MATERIAL AND METHODS: Sixteen male rats were used in the study. In each rat, muscle-periosteal flaps were elevated on the lateral aspect of the mandibular ramus on both sides, resulting in exposure of the bone surface. Small perforations were then produced in the ramus. A rigid, hemispherical Teflon capsule with a diameter of 6 mm and a height of 4 mm and with a hole in its middle portion, prepared to fit the circumference of an ITI HC titanium implant of 2.8 mm in diameter, was fixed to the ramus using 4 mini-screws. On one side of the jaw, the implant was placed through the hole in such a way that its apex did not make contact with the mandibular ramus (test). This placement of the implant did not ensure primary stability. On the other side of the jaw, a similar implant was placed through the hole of the capsule in such a way that contact was made between the implant and the surface of the ramus (control). This provided primary stability of the implant. After placement of the implants, the soft tissues were repositioned over the capsules and sutured. After 1, 3, 6 and 9 months, four animals were sacrificed and subjected to histometric analysis. RESULTS: The mean height of direct bone-to-implant contact of implants with primary stability was 38.8%, 52.9%, 64.6% and 81.3% of the implant length at 1, 3, 6 and 9 months, respectively. Of the bone adjacent to the implant surface, 28.1%, 28.9%, 52.6% and 69.6%, respectively, consisted of mineralized bone. At the test implants, no bone-to-implant contact was observed at any observation time or in any of these non-stabilized specimens. CONCLUSION: The findings of the present study indicate that primary implant stability is a prerequisite for successful osseointegration, and that implant instability results in fibrous encapsulation, thus confirming previously made clinical observations.
Resumo:
Objectives: Circumferential septal fiberotomy (CSF) following orthodontic treatment has been propagated to improve stability and prevent relapse of tooth alignment. The hypothesis of no difference between performed CSF and controls was tested. Methods: In 9 consecutively admitted patients at the end of orthodontic tooth alignment, the lower arch-wire was removed. CSF was performed from the mandibular canine to the central incisor on a randomly chosen side, while the contra-lateral side served as unsurgerized control. At baseline and every 4 weeks up to 6 months, study casts were taken and 1) analyzed using the Irregularity Index (II)according to Little and 2)photographed, traced and superimposed digitally. The translational and rotational movements of teeth as well as gingival parameters were analyzed as well. Results: By using the II and by superimposing the tracings, no statistically significant differences were found between the test (CSF) and control sides for any parameters. Moreover, CSF did not impinge on the gingival tissues. Conclusion: Since CSF did not improve stability of orthodontically aligned teeth nor prevent relapse during the healing pahse of up to 6 months, CSF should not be recommended following orthodontic therapy.
Resumo:
PURPOSE: Two noninvasive methods to measure dental implant stability are damping capacity assessment (Periotest) and resonance frequency analysis (Osstell). The objective of the present study was to assess the correlation of these 2 techniques in clinical use. MATERIALS AND METHODS: Implant stability of 213 clinically stable loaded and unloaded 1-stage implants in 65 patients was measured in triplicate by means of resonance frequency analysis and Periotest. Descriptive statistics as well as Pearson's, Spearman's, and intraclass correlation coefficients were calculated with SPSS 11.0.2. RESULTS: The mean values were 57.66 +/- 8.19 implant stability quotient for the resonance frequency analysis and -5.08 +/- 2.02 for the Periotest. The correlation of both measuring techniques was -0.64 (Pearson) and -0.65 (Spearman). The single-measure intraclass correlation coefficients for the ISQ and Periotest values were 0.99 and 0.88, respectively (95% CI). No significant correlation of implant length with either resonance frequency analysis or Periotest could be found. However, a significant correlation of implant diameter with both techniques was found (P < .005). The correlation of both measuring systems is moderate to good. It seems that the Periotest is more susceptible to clinical measurement variables than the Osstell device. The intraclass correlation indicated lower measurement precision for the Periotest technique. Additionally, the Periotest values differed more from the normal (Gaussian) curve of distribution than the ISQs. Both measurement techniques show a significant correlation to the implant diameter. CONCLUSION: Resonance frequency analysis appeared to be the more precise technique.
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.
Resumo:
We introduce a new boundary layer formalism on the basis of which a class of exact solutions to the Navier–Stokes equations is derived. These solutions describe laminar boundary layer flows past a flat plate under the assumption of one homogeneous direction, such as the classical swept Hiemenz boundary layer (SHBL), the asymptotic suction boundary layer (ASBL) and the oblique impingement boundary layer. The linear stability of these new solutions is investigated, uncovering new results for the SHBL and the ASBL. Previously, each of these flows had been described with its own formalism and coordinate system, such that the solutions could not be transformed into each other. Using a new compound formalism, we are able to show that the ASBL is the physical limit of the SHBL with wall suction when the chordwise velocity component vanishes while the homogeneous sweep velocity is maintained. A corresponding non-dimensionalization is proposed, which allows conversion of the new Reynolds number definition to the classical ones. Linear stability analysis for the new class of solutions reveals a compound neutral surface which contains the classical neutral curves of the SHBL and the ASBL. It is shown that the linearly most unstable Görtler–Hämmerlin modes of the SHBL smoothly transform into Tollmien–Schlichting modes as the chordwise velocity vanishes. These results are useful for transition prediction of the attachment-line instability, especially concerning the use of suction to stabilize boundary layers of swept-wing aircraft.
Resumo:
Changes in (1→3,1→4)-β-D-glucan endohydrolase (EC 3.2.1.73) protein levels were investigated in segments from second leaves of wheat (Triticum aestivum L.). The abundance of the enzyme protein markedly increased when leaf segments were incubated in the dark whereas the enzyme rapidly disappeared when dark-incubated segments were illuminated or fed with sucrose. Addition of cycloheximide (CHI) to the incubation medium led to the disappearance of previously synthesized (1→3,1→4)-β-glucanase and suppressed the dark-induced accumulation indicating that the enzyme was rather unstable. The degradation of (1→3,1→4)-β-glucanase was analyzed without the interference of de-novo synthesis in intercellular washing fluid (IWF). The loss of the enzyme protein during incubation of IWF (containing naturally present peptide hydrolases) indicated that the stability increased from pH 4 to pH 7 and that an increase in the temperature from 25 to 35 °C considerably decreased the stability. Chelating divalent cations in the IWF with o-phenanthroline also resulted in a lowered stability of the enzyme. A strong temperature effect in the range from 25 to 35 °C was also observed in wheat leaf segments. Diurnal changes in (1→3,1→4)-β-glucanase activity were followed in intact second leaves from young wheat plants. At the end of the dark period, the activity was high but constantly decreased during the light phase and remained low if the light period was extended. Activity returned to the initial level during a 10-h dark phase. During a diurnal cycle, changes in (1→3,1→4)-β-glucanase activity were associated with reciprocal changes in soluble carbohydrates. The results suggest that the synthesis and the proteolytic degradation of an apoplastic enzyme may rapidly respond to changing environmental conditions.
Resumo:
The viral protein Npro is unique to the genus Pestivirus within the family Flaviviridae. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I IFN (IFN-α/β) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-α/β induction despite the presence of an intact TRASH domain. Through systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of Npro of these four isolates were related to the lack of IRF-3-degrading activity. Restoring a histidine at position 40 or both a proline at position 17 and a lysine at position 61 based on the sequence of a functional Npro contributed to higher stability of the reconstructed Npro compared with the Npro from the Thai isolate. This led to enhanced interaction of Npro with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of Npro are involved in the stability of Npro, in interaction of Npro with IRF-3 and subsequent degradation of IRF-3, leading to downregulation of IFN-α/β production.
Resumo:
Trout provide a relatively easy source of hepatocytes that can be cryopreserved and used for a range of applications including toxicity testing and determination of intrinsic clearance. Standard protocols for isolating, cryopreserving, and thawing rainbow trout hepatocytes are described, along with procedures for using fresh or cryopreserved hepatocytes to assess metabolic stability of xenobiotics in fish by means of a substrate depletion approach. Variations on these methods, troubleshooting tips, and directions for use of extrapolation factors to express results in terms of in vivo intrinsic clearance are included. These protocols have been developed for rainbow trout, but can be adapted to other fish species with appropriate considerations.
Resumo:
BACKGROUND The human activation peptide of factor XIII (AP-FXIII) comprises the first 37 amino acids of the N-terminus and holds the FXIII in an inactive state. FXIII is activated either proteolytically by cleavage of AP-FXIII by thrombin, or non-proteolytically by high calcium concentrations. OBJECTIVE To investigate the role of AP-FXIII in the expression and stability of FXIII. METHODS We cloned 13 FXIII variants with progressive truncations of AP-FXIII from the N-terminus (delN-FXIII-A), expressed them in mammalian cells, and measured their thermostability, activation, and transglutaminase activity. We also used in silico calculations to analyze the stability of hypothetical delN-FXIII dimers and to identify crucial motifs within AP-FXIII. RESULTS Variants with deletions longer than the first 10 amino acids and an R11Q point mutant were not expressed as proteins. In silico calculations indicated that the sequence (8) FGGR(12) R plays a substantial role in intersubunit interactions in FXIII-A2 homodimers. In agreement with this prediction, the temperature stability of delN-FXIII variants decreased with increasing length of deletion. These results may suggest a role of the N-terminus of AP-FXIII in dimer stability. Substantial sequence homology was found among activation peptides of vertebrate and even invertebrate (crustacean) FXIII-A orthologs, which further supports our conclusion. CONCLUSIONS We conclude that deletion of 11 or more N-terminal amino acids disrupts intersubunit interactions, which may prevent FXIII-A2 homodimer formation. Therefore, AP-FXIII plays an important role in the stability of the FXIII-A2 dimer.