92 resultados para Splicing Variant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is a childhood fatal motor neuron disease caused by mutations in the Survival Motor Neuron 1 (SMN1) gene, currently without effective treatment. One possible therapeutic approach is the use of antisense oligonucleotides (ASOs) to redirect the splicing of a paralogous gene, SMN2, to increase the production of functional SMN protein. A range of ASOs with different chemical properties is suitable for these applications, including a morpholino (MO) variant, which has a particularly excellent safety, and efficacy profile. We used a 25- nt MO oligomer sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D(-10-34)) with superior efficacy to previously described sequences also in transgenic SMA Δ7 mice. The combined local and systemic administration of MO (bare or conjugated to octa-guanidine) is necessary to increase full-length SMN expression, leading to robust neuropathological features improvement and survival rescue. Additionally, several snRNA levels that are dysregulated in SMA mice could be restored by MO treatment. These results demonstrate that MO therapy is efficacious and can result in phenotypic rescue. These data provide important insights for the development of therapeutic strategies in SMA patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Cytomegalovirus (CMV) retinitis is a major cause of visual impairment and blindness among patients with uncontrolled HIV infections. Whereas polymorphisms in interferon-lambda 3 (IFNL3, previously named IL28B) strongly influence the clinical course of hepatitis C, few studies examined the role of such polymorphisms in infections due to viruses other than hepatitis C virus. OBJECTIVES To analyze the association of newly identified IFNL3/4 variant rs368234815 with susceptibility to CMV-associated retinitis in a cohort of HIV-infected patients. DESIGN AND METHODS This retrospective longitudinal study included 4884 white patients from the Swiss HIV Cohort Study, among whom 1134 were at risk to develop CMV retinitis (CD4 nadir <100 /μl and positive CMV serology). The association of CMV-associated retinitis with rs368234815 was assessed by cumulative incidence curves and multivariate Cox regression models, using the estimated date of HIV infection as a starting point, with censoring at death and/or lost follow-up. RESULTS A total of 40 individuals among 1134 patients at risk developed CMV retinitis. The minor allele of rs368234815 was associated with a higher risk of CMV retinitis (log-rank test P = 0.007, recessive mode of inheritance). The association was still significant in a multivariate Cox regression model (hazard ratio 2.31, 95% confidence interval 1.09-4.92, P = 0.03), after adjustment for CD4 nadir and slope, HAART and HIV-risk groups. CONCLUSION We reported for the first time an association between an IFNL3/4 polymorphism and susceptibility to AIDS-related CMV retinitis. IFNL3/4 may influence immunity against viruses other than HCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent development of a goat SNP genotyping microarray enables genome-wide association studies in this important livestock species. We investigated the genetic basis of the black and brown coat colour in Valais Blacknecked and Coppernecked goats. A genome-wide association analysis using goat SNP50 BeadChip genotypes of 22 cases and 23 controls allowed us to map the locus for the brown coat colour to goat chromosome 8. The TYRP1 gene is located within the associated chromosomal region, and TYRP1 variants cause similar coat colour phenotypes in different species. We thus considered TYRP1 as a strong positional and functional candidate. We resequenced the caprine TYRP1 gene by Sanger and Illumina sequencing and identified two non-synonymous variants, p.Ile478Thr and p.Gly496Asp, that might have a functional impact on the TYRP1 protein. However, based on the obtained pedigree and genotype data, the brown coat colour in these goats is not due to a single recessive loss-of-function allele. Surprisingly, the genotype distribution and the pedigree data suggest that the (496) Asp allele might possibly act in a dominant manner. The (496) Asp allele was present in 77 of 81 investigated Coppernecked goats and did not occur in black goats. This strongly suggests heterogeneity underlying the brown coat colour in Coppernecked goats. Functional experiments or targeted matings will be required to verify the unexpected preliminary findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fused in sarcoma (FUS), also called translocated in liposarcoma (TLS), is a ubiquitously expressed DNA/RNA binding protein belonging to the TET family and predominantly localized in the nucleus. FUS is proposed to be involved in various RNA metabolic pathways including transcription regulation, nucleo-cytosolic RNA transport, microRNA processing or pre-mRNA splicing [1]. Mutations in the FUS gene were identified in patients with familial amyotrophic lateral sclerosis (ALS) type 6 and sporadic ALS [2, 3]. ALS, also termed Lou Gehrig's disease, is a fatal adult-onset neurodegenerative disease affecting upper and lower motor neurons in the brain and spinal cord. There is increasing evidence supporting the hypothesis that FUS might play an important role in pre-mRNA splicing regulation. Several splicing factors were identified to associate with FUS including hnRNPA2 and C1/C2 [4], Y-box binding protein 1 (YB-1) [5] and serine arginine (SR) proteins (SC35 and TASR) [6]. Additionally, FUS was identified as a constituent of human spliceosomal complexes [1]. Our recent results indicate that FUS has increased affinity for certain but not all snRNPs of the minor and major spliceosome. Furthermore, in vitro studies revealed that FUS directly interacts with a factor specific for one of those snRNPs. These findings might uncover the molecular mechanism by which FUS regulates splicing and could explain previously observed effects of FUS on the splicing of the adenovirus E1A minigene [7] and changes in splicing caused by ALS associated FUS mutations. [1] Lagier-Tourenne C et al. (2010) Human Molecular Genetics 19:46-64 [2] Kwiatkowski TJ Jr et al. (2009) Science 323:1205-8 [3] Vance C et al. (2009) Science 323:1208-11 [4] Zinser H et al. (1994) Genes Dev 8:2513-26 [5] Chansky, H.A., et al. (2001) Cancer Res. 61: 3586-90. [6] Yang L et al. (1998) J Biol Chem 273:27761-6 [7] Kino Y et al. (2010) Nucleic Acid Research 7:2781-2798

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fused in sarcoma (FUS), also called translocated in liposarcoma (TLS), is a ubiquitously expressed DNA/RNA binding protein belonging to the TET family and predominantly localized in the nucleus. FUS is proposed to be involved in various RNA metabolic pathways including transcription regulation, nucleo-cytosolic RNA transport, microRNA processing or pre-mRNA splicing [1]. Mutations in the FUS gene were identified in patients with familial amyotrophic lateral sclerosis (ALS) type 6 and sporadic ALS [2, 3]. ALS, also termed Lou Gehrig's disease, is a fatal adult-onset neurodegenerative disease affecting upper and lower motor neurons in the brain and spinal cord. There is increasing evidence supporting the hypothesis that FUS might play an important role in pre-mRNA splicing regulation. Several splicing factors were identified to associate with FUS including hnRNPA2 and C1/C2 [4], Y-box binding protein 1 (YB-1) [5] and serine arginine (SR) proteins (SC35 and TASR) [6]. Additionally, FUS was identified as a constituent of human spliceosomal complexes [1]. Our recent results indicate that FUS has increased affinity for certain but not all snRNPs of the minor and major spliceosome. Furthermore, in vitro studies revealed that FUS directly interacts with a factor specific for one of those snRNPs. These findings might uncover the molecular mechanism by which FUS regulates splicing and could explain previously observed effects of FUS on the splicing of the adenovirus E1A minigene [7] and changes in splicing caused by ALS associated FUS mutations. [1] Lagier-Tourenne C et al. (2010) Human Molecular Genetics 19:46-64 [2] Kwiatkowski TJ Jr et al. (2009) Science 323:1205-8 [3] Vance C et al. (2009) Science 323:1208-11 [4] Zinser H et al. (1994) Genes Dev 8:2513-26 [5] Chansky, H.A., et al. (2001) Cancer Res. 61: 3586-90. [6] Yang L et al. (1998) J Biol Chem 273:27761-6 [7] Kino Y et al. (2010) Nucleic Acid Research 7:2781-2798

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe 14 cases of angiomatous Kaposi sarcoma (KS), a distinct histological variant of KS first mentioned by Gottlieb and Ackerman in 1988 that can easily be mistaken for a hemangioma. Intriguingly, this variant of KS has not attracted much attention and has not been studied in detail. Immunohistochemistry showed prominent staining of podoplanin (D2-40) of the neoplastic vasculature but not the preexisting vessels, suggesting lymphatic differentiation, despite the erythrocyte-filled round lumens. To test whether D2-40 staining of round vessels with erythrocytes was distinctive, we stained sinusoidal hemangiomas and cellular angiolipomas, both of which have these structures. In contrast to angiomatous KS, the vessels in both entities were podoplanin (D2-40) negative. The finding of round erythrocyte-filled vessels with podoplanin (D2-40) positivity may be distinctive for this form of KS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Spinal muscular atrophy (SMA) is a fatal motor neuron disease of childhood that is caused by mutations in the SMN1 gene. Currently, no effective treatment is available. One possible therapeutic approach is the use of antisense oligos (ASOs) to redirect the splicing of the paralogous gene SMN2, thus increasing functional SMN protein production. Various ASOs with different chemical properties are suitable for these applications, including a morpholino oligomer (MO) variant with a particularly excellent safety and efficacy profile. OBJECTIVE: We investigated a 25-nt MO sequence targeting the negative intronic splicing silencer (ISS-N1) 10 to 34 region. METHODS: We administered a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) in the SMAΔ7 mouse model and evaluated the effect and neuropathologic phenotype. We tested different concentrations (from 2 to 24 nM) and delivery protocols (intracerebroventricular injection, systemic injection, or both). We evaluated the treatment efficacy regarding SMN levels, survival, neuromuscular phenotype, and neuropathologic features. RESULTS: We found that a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) exhibited superior efficacy in transgenic SMAΔ7 mice compared with previously described sequences. In our experiments, the combination of local and systemic administration of MO (bare or conjugated to octaguanidine) was the most effective approach for increasing full-length SMN expression, leading to robust improvement in neuropathologic features and survival. Moreover, we found that several small nuclear RNAs were deregulated in SMA mice and that their levels were restored by MO treatment. CONCLUSION: These results indicate that MO-mediated SMA therapy is efficacious and can result in phenotypic rescue, providing important insights for further development of ASO-based therapeutic strategies in SMA patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the largest international study on Glanzmann thrombasthenia (GT), an inherited bleeding disorder where defects of the ITGA2B and ITGB3 genes cause quantitative or qualitative defects of the αIIbβ3 integrin, a key mediator of platelet aggregation. Sequencing of the coding regions and splice sites of both genes in members of 76 affected families identified 78 genetic variants (55 novel) suspected to cause GT. Four large deletions or duplications were found by quantitative real-time PCR. Families with mutations in either gene were indistinguishable in terms of bleeding severity that varied even among siblings. Families were grouped into type I and the rarer type II or variant forms with residual αIIbβ3 expression. Variant forms helped identify genes encoding proteins mediating integrin activation. Splicing defects and stop codons were common for both ITGA2B and ITGB3 and essentially led to a reduced or absent αIIbβ3 expression; included was a heterozygous c.1440-13_c.1440-1del in intron 14 of ITGA2B causing exon skipping in 7 unrelated families. Molecular modeling revealed how many missense mutations induced subtle changes in αIIb and β3 domain structure across both subunits thereby interfering with integrin maturation and/or function. Our study extends knowledge of Glanzmann thrombasthenia and the pathophysiology of an integrin. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3 % of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16 % of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30 % of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of alternative splicing for the diversity of the proteome and the large number of genetic diseases that are due to splicing defects call for methods to modulate alternative splicing decisions. Although splicing can be modulated by antisense oligonucleotides, this approach is confronted with problems of efficient delivery and the need for repeated administrations of large amounts of the oligonucleotides. Therefore we have developed methods allowing us to modulate splicing with the help of modified derivatives of the U7 small nuclear RNA involved in histone RNA 3' end processing. Its nuclear accumulation as a stable ribonucleoprotein particle makes U7 snRNA especially useful for this purpose. In particular, U7 derivatives containing two tandem antisense sequences directed against targets upstream and downstream of an exon can induce the efficient and specific skipping of that exon. U7 expression cassettes have been successfully introduced into a great number of cell lines, primary cells or tissues with the help of lentiviral and adeno-associated viral vectors. Examples of these therapeutic strategies in the fields of β-thalassemia, Duchenne muscular dytrophy and HIV/AIDS are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of naturally occurring human α1a-Adrenergic Receptor (α1aAR) genetic variants associated with cardiovascular disorders is poorly understood. Here, we present the novel findings that expression of human α1aAR-247R (247R) genetic variant in cardiomyoblasts leads to transition of cardiomyoblasts into a fibroblast-like phenotype, evidenced by morphology and distinct de novo expression of characteristic genes. These fibroblast-like cells exhibit constitutive, high proliferative capacity and agonist-induced hypertrophy compared with cells prior to transition. We demonstrate that constitutive, synergistic activation of EGFR, Src and ERK kinases is the potential molecular mechanism of this transition. We also demonstrate that 247R triggers two distinct EGFR transactivation-dependent signaling pathways: 1) constitutive Gq-independent β-arrestin-1/Src/MMP/EGFR/ERK-dependent hyperproliferation and 2) agonist-induced Gq- and EGFR/STAT-dependent hypertrophy. Interestingly, in cardiomyoblasts agonist-independent hyperproliferation is MMP-dependent, but in fibroblast-like cells it is MMP-independent, suggesting that expression of α1aAR genetic variant in cardiomyocytes may trigger extracellular matrix remodeling. Thus, these novel findings demonstrate that EGFR transactivation by α1aAR-247R leads to hyperproliferation, hypertrophy and alterations in cardiomyoblasts, suggesting that these unique genetically-mediated alterations in signaling pathways and cellular function may lead to myocardial fibrosis. Such extracellular matrix remodeling may contribute to the genesis of arrhythmias in certain types of heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthracyclines are used in over 50% of childhood cancer treatment protocols, but their clinical usefulness is limited by anthracycline-induced cardiotoxicity (ACT) manifesting as asymptomatic cardiac dysfunction and congestive heart failure in up to 57% and 16% of patients, respectively. Candidate gene studies have reported genetic associations with ACT, but these studies have in general lacked robust patient numbers, independent replication or functional validation. Thus, the individual variability in ACT susceptibility remains largely unexplained. We performed a genome-wide association study in 280 patients of European ancestry treated for childhood cancer, with independent replication in similarly treated cohorts of 96 European and 80 non-European patients. We identified a nonsynonymous variant (rs2229774, p.Ser427Leu) in RARG highly associated with ACT (P = 5.9 × 10(-8), odds ratio (95% confidence interval) = 4.7 (2.7-8.3)). This variant alters RARG function, leading to derepression of the key ACT genetic determinant Top2b, and provides new insight into the pathophysiology of this severe adverse drug reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several forms of beta-thalassemia, mutations in the second intron of the beta-globin gene create aberrant 5' splice sites and activate a common cryptic 3' splice site upstream. As a result, the thalassemic beta-globin pre-mRNAs are spliced almost exclusively via the aberrant splice sites leading to a deficiency of correctly spliced beta-globin mRNA and, consequently, beta-globin. We have designed a series of vectors that express modified U7 snRNAs containing sequences antisense to either the aberrant 5' or 3' splice sites in the IVS2-705 thalassemic pre-mRNA. Transient expression of modified U7 snRNAs in a HeLa cell line stably expressing the IVS2-705 beta-globin gene restored up to 65% of correct splicing in a sequence-specific and dose-dependent manner. Cell lines that stably coexpressed IVS2-705 pre-mRNA and appropriately modified U7 snRNA exhibited up to 55% of permanent restoration of correct splicing and expression of full-length beta-globin protein. This novel approach provides a potential alternative to gene replacement therapies.