77 resultados para Serine Endopeptidases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adverse cardiovascular events are the consequence of a molecular chain reaction at the site of vulnerable plaques. Key players are platelets and coagulation factors that are activated following plaque rupture and often cause arterial obstruction. Thrombin, a plasma serine protease, plays a role in hemostasis of coagulation as well as in thrombosis and cell growth, leading to restenosis and atherosclerosis. Interesting and promising new molecules, the direct thrombin inhibitors, have been shown to be as effective as the combination of glycoprotein IIb-IIIa inhibitors and heparin for the prevention of arterial thrombosis. Until recently, direct thrombin inhibitors could be applied only parenterally; therefore, therapy was limited to hospitalized patients. As a result of recent drug development, orally active direct thrombin inhibitors are now available and have been evaluated for the long-term treatment of venous thrombosis and arterial fibrillation. Due to their specific pharmacodynamic characteristics by binding directly to thrombin--and thus inhibiting platelet aggregation and fibrin generation--these novel drugs may also have therapeutic potential for the treatment of atherothrombotic disease and its complications such as myocardial infarction, stroke or limb ischemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of cell growth, that is cell size, is largely controlled by mTOR (the mammalian target of rapamycin), a large serine/threonine protein kinase that regulates ribosome biogenesis and protein translation. mTOR activity is regulated both by the availability of growth factors, such as insulin/IGF-1 (insulin-like growth factor 1), and by nutrients, notably the supply of certain key amino acids. The last few years have seen a remarkable increase in our understanding of the canonical, growth factor-regulated pathway for mTOR activation, which is mediated by the class I PI3Ks (phosphoinositide 3-kinases), PKB (protein kinase B), TSC1/2 (the tuberous sclerosis complex) and the small GTPase, Rheb. However, the nutrient-responsive input into mTOR is important in its own right and is also required for maximal activation of mTOR signalling by growth factors. Despite this, the details of the nutrient-responsive signalling pathway(s) controlling mTOR have remained elusive, although recent studies have suggested a role for the class III PI3K hVps34. In this issue of the Biochemical Journal, Findlay et al. demonstrate that the protein kinase MAP4K3 [mitogen-activated protein kinase kinase kinase kinase-3, a Ste20 family protein kinase also known as GLK (germinal centre-like kinase)] is a new component of the nutrient-responsive pathway. MAP4K3 activity is stimulated by administration of amino acids, but not growth factors, and this is insensitive to rapamycin, most likely placing MAP4K3 upstream of mTOR. Indeed, MAP4K3 is required for phosphorylation of known mTOR targets such as S6K1 (S6 kinase 1), and overexpression of MAP4K3 promotes the rapamycin-sensitive phosphorylation of these same targets. Finally, knockdown of MAP4K3 levels causes a decrease in cell size. The results suggest that MAP4K3 is a new component in the nutrient-responsive pathway for mTOR activation and reveal a completely new function for MAP4K3 in promoting cell growth. Given that mTOR activity is frequently deregulated in cancer, there is much interest in new strategies for inhibition of this pathway. In this context, MAP4K3 looks like an attractive drug target since inhibitors of this enzyme should switch off mTOR, thereby inhibiting cell growth and proliferation, and promoting apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemokines are small, secreted proteins that orchestrate the migration of cells, which are involved in immune defence, immune surveillance and haematopoiesis. However, chemokines are also implicated in the pathology of various inflammatory diseases, cancers and HIV. The chemokine system is considerably large and has a redundancy in the repertoire of its inflammatory mediators. Therefore, strict regulation of chemokine activity is crucial. Chemokines are the substrate for various proteases including the serine protease CD26/dipeptidyl-peptidase IV and matrix metalloproteinases. Regulation by proteolytic cleavage controls and fine-tunes chemokine function by either enhancing or reducing its chemotactic activity or receptor selectivity. Often chemokines and the proteases that regulate them are produced in the same microenvironment and expression of both may be simultaneously induced by a common stimulus enabling the rapid regulation of chemokine activity. The overall impact of cleaved chemokines in cellular responses is very complex. In this review, we will give an overview on chemokine modification and the respective chemokine modifying proteases. Furthermore, we will summarize the emerging literature describing the consequences in inflammation, haematopoiesis, cancer and HIV infection upon proteolytic chemokine processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance of trypanosomes to melarsoprol is ascribed to reduced uptake of the drug via the P2 nucleoside transporter. The aim of this study was to look for evidence of drug resistance in Trypanosoma brucei gambiense isolates from sleeping sickness patients in Ibba, South Sudan, an area of high melarsoprol failure rate. Eighteen T. b. gambiense stocks were phenotypically and only 10 strains genotypically characterized. In vitro, all isolates were sensitive to melarsoprol, melarsen oxide, and diminazene. Infected mice were cured with a 4 day treatment of 2.5mg/kg bwt melarsoprol, confirming that the isolates were sensitive. The gene that codes for the P2 transporter, TbATI, was amplified by PCR and sequenced. The sequences were almost identical to the TbAT1(sensitive) reference, except for one point mutation, C1384T resulting in the amino acid change proline-462 to serine. None of the described TbAT1(resistant)-type mutations were detected. In a T. b. gambiense sleeping sickness focus where melarsoprol had to be abandoned due to the high incidence of treatment failures, no evidence for drug resistant trypanosomes or for TbAT1(resistant)-type alleles of the P2 transporter could be found. These findings indicate that factors other than drug resistance contribute to melarsoprol treatment failures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Death-associated protein kinase 2 (DAPK2) belongs to a family of proapoptotic Ca(2+)/calmodulin-regulated serine/threonine kinases. We recently identified DAPK2 as an enhancing factor during granulocytic differentiation. To identify transcriptional DAPK2 regulators, we cloned 2.7 kb of the 5'-flanking region of the DAPK2 gene. We found that E2F1 and Krüppel-like factor 6 (KLF6) strongly activate the DAPK2 promoter. We mapped the E2F1 and KLF6 responsive elements to a GC-rich region 5' of exon 1 containing several binding sites for KLF6 and Sp1 but not for E2F. Moreover, we showed that transcriptional activation of DAPK2 by E2F1 and KLF6 is dependent on Sp1 using Sp1/KLF6-deficient insect cells, mithramycin A treatment to block Sp1-binding or Sp1 knockdown cells. Chromatin immunoprecipitation revealed recruitment of Sp1 and to lesser extent that of E2F1 and KLF6 to the DAPK2 promoter. Activation of E2F1 in osteosarcoma cells led to an increase of endogenous DAPK2 paralleled by cell death. Inhibition of DAPK2 expression resulted in significantly reduced cell death upon E2F1 activation. Similarly, KLF6 expression in H1299 cells increased DAPK2 levels accompanied by cell death that is markedly decreased upon DAPK2 knockdown. Moreover, E2F1 and KLF6 show cooperation in activating the DAPK2 promoter. In summary, our findings establish DAPK2 as a novel Sp1-dependent target gene for E2F1 and KLF6 in cell death response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of basophils in allergic disease and other Th2-type immune responses depends on their persistence at sites of inflammation, but the ligands and molecular pathways supporting basophil survival are largely unknown. The comparison of rates of apoptosis and of the expression of antiapoptotic proteins in different human granulocyte types revealed that basophils have a considerably longer spontaneous life span than neutrophils and eosinophils consistent with high levels of constitutive Bcl-2 expression. Interleukin-3 (IL-3) is the only ligand that efficiently protects basophils from apoptosis as evidenced by screening a large number of stimuli. IL-3 up-regulates the expression of the antiapoptotic proteins cIAP2, Mcl-1, and Bcl-X(L) and induces a rapid and sustained de novo expression of the serine/threonine kinase Pim1 that closely correlates with cytokine-enhanced survival. Inhibitor studies and protein transduction of primary basophils using wild-type and kinase-dead Pim1-Tat fusion-proteins demonstrate the functional importance of Pim1 induction in the IL-3-enhanced survival. Our data further indicate that the antiapoptotic Pim1-mediated pathway operates independently of PI3-kinase but involves the activation of p38 MAPK. The induction of Pim1 leading to PI3-kinase-independent survival as described here for basophils may also be a relevant antiapoptotic mechanism in other terminally differentiated leukocyte types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human aurora family of serine-threonine kinases comprises three members, which act in concert with many other proteins to control chromosome assembly and segregation during mitosis. Aurora dysfunction can cause aneuploidy, mitotic arrest, and cell death. Aurora kinases are strongly expressed in a broad range of cancer types. Aurora A expression in tumors is often associated with gene amplification, genetic instability, poor histologic differentiation, and poor prognosis. Aurora B is frequently expressed at high levels in a variety of tumors, often coincidently with aurora A, and expression level has also been associated with increased genetic instability and clinical outcome. Further, aurora kinase gene polymorphisms are associated with increased risk or early onset of cancer. The expression of aurora C in cancer is less well studied. In recent years, several small-molecule aurora kinase inhibitors have been developed that exhibit preclinical activity against a wide range of solid tumors. Preliminary clinical data from phase I trials have largely been consistent with cytostatic effects, with disease stabilization as the best response achieved in solid tumors. Objective responses have been noted in leukemia patients, although this might conceivably be due to inhibition of the Abl kinase. Current challenges include the optimization of drug administration, the identification of potential biomarkers of tumor sensitivity, and combination studies with cytotoxic drugs. Here, we summarize the most recent preclinical and clinical data and discuss new directions in the development of aurora kinase inhibitors as antineoplastic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cathepsins are required for the processing of antigens in order to make them suitable for loading on major histocompatibility complex (MHC) class II molecules, for subsequent presentation to CD4(+) T cells. It was shown that antigen processing in monocyte-derived dendritic cells (DC), a commonly used DC model, is different from that of primary human DC. Here, we report that the two subsets of human myeloid DC (mDC) and plasmacytoid DC (pDC) differ in their cathepsin distribution. The serine protease cathepsin G (CatG) was detected in mDC1, mDC2, pDC, cortical thymic epithelial cells (cTEC) and high levels of CatG were determined in pDC. To address the role of CatG in the processing and presentation of a Multiple Sclerosis-associated autoantigen myelin basic protein (MBP), we used a non-CatG expressing fibroblast cell line and fibroblasts, which were preloaded with purified CatG. We find that preloading fibroblasts with CatG results in a decrease of MBP84-98-specific T cell proliferation, when compared to control cells. Our data suggest a different processing signature in primary human antigen-presenting cells and CatG may be of functional importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matriptase-2 (Tmprss6), a type II transmembrane serine protease, has an essential role in iron homoeostasis as a hepcidin regulator. Recently, patients with TMPRSS6 mutations and suffering from iron-refractory iron deficiency anaemia (IRIDA) have been reported. We describe two new cases of IRIDA, one patient of Swiss origin and the second of Italian origin. The first case results from a large deletion of 1054 nucleotides corresponding to an in frame deletion of 30 amino acid residues in the low-density lipoprotein receptor-1/-2 (LDLR-1/-2) domains and from a missense mutation in CUB1 (S304L). In the second case, a homozygous G-->C mutation in the last nucleotide of exon 15 and which modified the consensus sequence of the 5' splice donor site of intron 15 (AGgt-->ACgt) was identified. Both patients had a high hepcidin level and low serum iron and transferrin saturation compared to age-matched controls. Continuous perfusion of i.v. iron 4 h/d x 5 d in the first case resulted in a significant rise in haemoglobin. These new cases of IRIDA illustrate the importance of LDLR-1/-2 and CUB1 domains in matriptase-2 function as well as the role of matriptase-2 in hepcidin regulation. Furthermore a deletional form of TMPRSS6 (in LDLR-1/-2 domains) resulting in IRIDA is described for the first time. These cases reinforce the belief that patients suffering from IRIDA have no specific geographical or ethnic distribution and are sporadic secondary to different mutations of the matriptase-2 gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Eosinophil differentiation, activation, and survival are largely regulated by IL-5. IL-5-mediated transmembrane signal transduction involves both Lyn-mitogen-activated protein kinases and Janus kinase 2-signal transducer and activator of transcription pathways. OBJECTIVE: We sought to determine whether additional signaling molecules/pathways are critically involved in IL-5-mediated eosinophil survival. METHODS: Eosinophil survival and apoptosis were measured in the presence and absence of IL-5 and defined pharmacologic inhibitors in vitro. The specific role of the serine/threonine kinase proviral integration site for Moloney murine leukemia virus (Pim) 1 was tested by using HIV-transactivator of transcription fusion proteins containing wild-type Pim-1 or a dominant-negative form of Pim-1. The expression of Pim-1 in eosinophils was analyzed by means of immunoblotting and immunofluorescence. RESULTS: Although pharmacologic inhibition of phosphatidylinositol-3 kinase (PI3K) by LY294002, wortmannin, or the selective PI3K p110delta isoform inhibitor IC87114 was successful in each case, only LY294002 blocked increased IL-5-mediated eosinophil survival. This suggested that LY294002 inhibited another kinase that is critically involved in this process in addition to PI3K. Indeed, Pim-1 was rapidly and strongly expressed in eosinophils after IL-5 stimulation in vitro and readily detected in eosinophils under inflammatory conditions in vivo. Moreover, by using specific protein transfer, we identified Pim-1 as a critical element in IL-5-mediated antiapoptotic signaling in eosinophils. CONCLUSIONS: Pim-1, but not PI3K, plays a major role in IL-5-mediated antiapoptotic signaling in eosinophils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infections by the bacterium Aeromonas salmonicida subsp. achromogenes cause significant disease in a number of fish species. In this study, we showed that AsaP1, a toxic 19-kDa metallopeptidase produced by A. salmonicida subsp. achromogenes, belongs to the group of extracellular peptidases (Aeromonas type) (MEROPS ID M35.003) of the deuterolysin family of zinc-dependent aspzincin endopeptidases. The structural gene of AsaP1 was sequenced and found to be highly conserved among gram-negative bacteria. An isogenic Delta asaP1 A. salmonicida subsp. achromogenes strain was constructed, and its ability to infect fish was compared with that of the wild-type (wt) strain. The Delta asaP1 strain was found to infect Arctic charr, Atlantic salmon, and Atlantic cod, but its virulence was decreased relative to that of the wt strain. The 50% lethal dose of the AsaP1 mutant was 10-fold higher in charr and 5-fold higher in salmon than that of the wt strain. The pathology induced by the AsaP1-deficient strain was also different from that of the wt strain. Furthermore, the mutant established significant bacterial colonization in all observed organs without any signs of a host response in the infected tissue. AsaP1 is therefore the first member of the M35 family that has been shown to be a bacterial virulence factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of Culicoides and sometimes Simulium spp. The aim of this investigation was to identify Simulium allergens associated with IBH. A phage surface display cDNA library expressing recombinant Simulium vittatum salivary gland proteins was screened using sera of IBH-affected horses sensitized to S. vittatum salivary gland proteins as shown in immunoblot, resulting in the identification of seven cDNAs encoding IgE-binding proteins. The deduced amino acid sequences of these proteins showed sequence similarities to antigen 5 like protein (Sim v 1), to a serine protease inhibitor (Sim v 2), to two alpha-amylases (Sim v 3 and Sim v 4), and to three S. vittatum erythema proteins (SVEPs). The cDNA inserts were subcloned and expressed as [His](6)-tagged protein in Escherichia coli and purified using Ni(2+)-chelate affinity chromatography. Mice were immunised with the seven recombinant proteins and the antibodies tested against the recombinant proteins and salivary gland extract (SGE) of S. vittatum and Culicoides nubeculosus in immunoblot analyses. r-Sim v 1 specific mouse Abs recognized a band of about 32 kDa in immunoblots of both S. vittatum and C. nubeculosus SGE, detectable also by serum IgE of IBH-affected horses. Preincubation of horse serum with r-Sim v 1 completely inhibited IgE binding to the 32 kDa band demonstrating the presence of cross-reactive antigen 5 like proteins in both SGE. Determination of IgE levels against the r-Sim v proteins and crude S. vittatum extract by ELISA in sera from 25 IBH-affected and 20 control horses showed that IBH-affected horses had significantly higher IgE levels than controls against r-Sim v 1, 2, 3, 4 and S. vittatum extract, whereas the r-SVEP showed only marginal IgE binding. Further analyses showed that 60% of IBH-affected horses reacted to r-Sim v 1, suggesting that this could be a major allergen for IBH. Forty to twenty percent of the IBH-affected horses reacted with r-Sim v 2, 3 or 4. Combination of the results obtained with the 4 r-Sim v proteins showed that 92% of the IBH-affected but only 15% of the healthy horses had IgE levels against one or more of the 4 r-Sim v proteins. Seventy percent of the healthy horses had detectable IgE against S. vittatum extract, indicating a low specificity of the detection system used. Optimization of the ELISA system will be required to determine reliable cut-off values for the IBH-related allergens. Their in vivo relevance needs to be carefully assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multilocus sequence typing (MLST) scheme was established and evaluated for Mycoplasma hyopneumoniae, the etiologic agent of enzootic pneumonia in swine with the aim of defining strains. Putative target genes were selected by genome sequence comparisons. Out of 12 housekeeping genes chosen and experimentally validated, the 7 genes efp, metG, pgiB, recA, adk, rpoB, and tpiA were finally used to establish the MLST scheme. Their usefulness was assessed individually and in combination using a set of well-defined field samples and strains of M. hyopneumoniae. A reduction to the three targets showing highest variation (adk, rpoB, and tpiA) was possible resulting in the same number of sequence types as using the seven targets. The established MLST approach was compared with the recently described typing method using the serine-rich repeat motif-encoding region of the p146 gene. There was coherence between the two methods, but MLST resulted in a slightly higher resolution. Farms recognized to be affected by enzootic pneumonia were always associated with a single M. hyopneumoniae clone, which in most cases differed from farm to farm. However, farms in close geographic or operational contact showed identical clones as defined by MLST typing. Population analysis showed that recombination in M. hyopneumoniae occurs and that strains are very diverse with only limited clonality observed. Elaborate classical MLST schemes using multiple targets for M. hyopneumoniae might therefore be of limited value. In contrast, MLST typing of M. hyopneumoniae using the three genes adk, rpoB, and tpiA seems to be sufficient for epidemiological investigations by direct amplification of target genes from lysate of clinical material without prior cultivation.