125 resultados para Sekundäres Organisches Aerosol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10–50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3–6 × 106 cm−3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of this study is to investigate the capability of spaceborne remote sensing data to predict ground concentrations of PM10 over the European Alpine region using satellite derived Aerosol Optical Depth (AOD) from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS). The spatial and temporal resolutions of these aerosol products (10 km and 2 measurements per day for MODIS, ∼ 25 km and observation intervals of 15 min for SEVIRI) permit an evaluation of PM estimation from space at different spatial and temporal scales. Different empirical linear relationships between coincident AOD and PM10 observations are evaluated at 13 ground-based PM measurement sites, with the assumption that aerosols are vertically homogeneously distributed below the planetary Boundary Layer Height (BLH). The BLH and Relative Humidity (RH) variability are assessed, as well as their impact on the parameterization. The BLH has a strong influence on the correlation of daily and hourly time series, whilst RH effects are less clear and smaller in magnitude. Despite its lower spatial resolution and AOD accuracy, SEVIRI shows higher correlations than MODIS (rSEV∼ 0.7, rMOD∼ 0.6) with regard to daily averaged PM10. Advantages from MODIS arise only at hourly time scales in mountainous locations but lower correlations were found for both sensors at this time scale (r∼ 0.45). Moreover, the fraction of days in 2008 with at least one satellite observation was 27% for SEVIRI and 17% for MODIS. These results suggest that the frequency of observations plays an important role in PM monitoring, while higher spatial resolution does not generally improve the PM estimation. Ground-based Sun Photometer (SP) measurements are used to validate the satellite-based AOD in the study region and to discuss the impact of aerosols' micro-physical properties in the empirical models. A lower error limit of 30 to 60% in the PM10 assessment from space is estimated in the study area as a result of AOD uncertainties, variability of aerosols properties and the heterogeneity of ground measurement sites. It is concluded that SEVIRI has a similar capacity to map PM as sensors on board polar-orbiting platforms, with the advantage of a higher number of observations. However, the accuracy represents a serious limitation to the applicability of satellites for ground PM mapping, especially in mountainous areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results from the international field campaign DAURE (Detn. of the sources of atm. Aerosols in Urban and Rural Environments in the Western Mediterranean), with the objective of apportioning the sources of fine carbonaceous aerosols. Submicron fine particulate matter (PM1) samples were collected during Feb.-March 2009 and July 2009 at an urban background site in Barcelona (BCN) and at a forested regional background site in Montseny (MSY). We present radiocarbon (14C) anal. for elemental and org. carbon (EC and OC) and source apportionment for these data. We combine the results with those from component anal. of aerosol mass spectrometer (AMS) measurements, and compare to levoglucosan-based ests. of biomass burning OC, source apportionment of filter data with inorg. compn. + EC + OC, submicron bulk potassium (K) concns., and gaseous acetonitrile concns. At BCN, 87 % and 91 % of the EC on av., in winter and summer, resp., had a fossil origin, whereas at MSY these fractions were 66 % and 79 %. The contribution of fossil sources to org. carbon (OC) at BCN was 40 % and 48 %, in winter and summer, resp., and 31 % and 25 % at MSY. The combination of results obtained using the 14C technique, AMS data, and the correlations between fossil OC and fossil EC imply that the fossil OC at Barcelona is ∼47 % primary whereas at MSY the fossil OC is mainly secondary (∼85 %). Day-to-day variation in total carbonaceous aerosol loading and the relative contributions of different sources predominantly depended on the meteorol. transport conditions. The estd. biogenic secondary OC at MSY only increased by ∼40 % compared to the order-of-magnitude increase obsd. for biogenic volatile org. compds. (VOCs) between winter and summer, which highlights the uncertainties in the estn. of that component. Biomass burning contributions estd. using the 14C technique ranged from similar to slightly higher than when estd. using other techniques, and the different estns. were highly or moderately correlated. Differences can be explained by the contribution of secondary org. matter (not included in the primary biomass burning source ests.), and/or by an over-estn. of the biomass burning OC contribution by the 14C technique if the estd. biomass burning EC/OC ratio used for the calcns. is too high for this region. Acetonitrile concns. correlate well with the biomass burning EC detd. by 14C. K is a noisy tracer for biomass burning. [on SciFinder(R)]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric aerosol optical depth changes. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initial weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields a small additional radiative forcing that amplifies the cooling and perturbs the Earth System on longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different magnitudes of stratospheric aerosol optical depth changes and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the magnitude and temporal evolution of the perturbation, and time scale of interest. On decadal time scales, modeled γ is several times larger for a Pinatubo-like eruption than for the industrial period and for a high emission, 21st century scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing evidence of the adverse impact of prenatal exposure to air pollution. This is of particular interest, as exposure during pregnancy--a crucial time span of important biological development--may have long-term implications. The aims of this review are to show current epidemiological evidence of known effects of prenatal exposure to air pollution and present possible mechanisms behind this process. Harmful effects of exposure to air pollution during pregnancy have been shown for different birth outcomes: higher infant mortality, lower birth weight, impaired lung development, increased later respiratory morbidity, and early alterations in immune development. Although results on lower birth weight are somewhat controversial, evidence for higher infant mortality is consistent in studies published worldwide. Possible mechanisms include direct toxicity of particles due to particle translocation across tissue barriers or particle penetration across cellular membranes. The induction of specific processes or interaction with immune cells in either the pregnant mother or the fetus may be possible consequences. Indirect effects could be oxidative stress and inflammation with consequent hemodynamic alterations resulting in decreased placental blood flow and reduced transfer of nutrients to the fetus. The early developmental phase of pregnancy is thought to be very important in determining long-term growth and overall health. So-called "tracking" of somatic growth and lung function is believed to have a huge impact on long-term morbidity, especially from a public health perspective. This is particularly important in areas with high levels of outdoor pollution, where it is practically impossible for an individual to avoid exposure. Especially in these areas, good evidence for the association between prenatal exposure to air pollution and infant mortality exists, clearly indicating the need for more stringent measures to reduce exposure to air pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Aerosol therapy in preterm infants is challenging, as a very small proportion of the drug deposits in the lungs. Aim: Our aim was to compare efficiency of standard devices with newer, more efficient aerosol delivery devices. Methods: Using salbutamol as a drug marker, we studied two prototypes of the investigational eFlow(®) nebulizer for babies (PARI Pharma GmbH), a jet nebulizer (Intersurgical(®) Cirrus(®)), and a pressurized metered dose inhaler (pMDI; GSK) with a detergent-coated holding chamber (AeroChamber(®) MV) in the premature infant nose throat-model (PrINT-model) of a 32-week preterm infant (1,750 g). A filter or an impactor was placed below the infant model's "trachea" to capture the drug dose or particle size, respectively, that would have been deposited in the lung. Results: Lung dose (percentage of nominal dose) was 1.5%, 6.8%, and 18.0-20.6% for the jet nebulizer, pMDI-holding chamber, and investigational eFlow nebulizers, respectively (p<0.001). Jet nebulizer residue was 69.4% and 10.7-13.9% for the investigational eFlow nebulizers (p<0.001). Adding an elbow extension between the eFlow and the model significantly lowered lung dose (p<0.001). A breathing pattern with lower tidal volume decreased deposition in the PrINT-model and device residue (p<0.05), but did not decrease lung dose. Conclusions: In a model for infant aerosol inhalation, we confirmed low lung dose using jet nebulizers and pMDI-holding chambers, whereas newer, more specialized vibrating membrane devices, designed specifically for use in preterm infants, deliver up to 20 times more drug to the infant's lung.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice core data from Antarctica provide detailed insights into the characteristics of past climate, atmospheric circulation, as well as changes in the aerosol load of the atmosphere. We present high-resolution records of soluble calcium (Ca2+), non-sea-salt soluble calcium (nssCa2+), and particulate mineral dust aerosol from the East Antarctic Plateau at a depth resolution of 1 cm, spanning the past 800 000 years. Despite the fact that all three parameters are largely dust-derived, the ratio of nssCa2+ to particulate dust is dependent on the particulate dust concentration itself. We used principal component analysis to extract the joint climatic signal and produce a common high-resolution record of dust flux. This new record is used to identify Antarctic warming events during the past eight glacial periods. The phasing of dust flux and CO2 changes during glacial-interglacial transitions reveals that iron fertilization of the Southern Ocean during the past nine glacial terminations was not the dominant factor in the deglacial rise of CO2 concentrations. Rapid changes in dust flux during glacial terminations and Antarctic warming events point to a rapid response of the southern westerly wind belt in the region of southern South American dust sources on changing climate conditions. The clear lead of these dust changes on temperature rise suggests that an atmospheric reorganization occurred in the Southern Hemisphere before the Southern Ocean warmed significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To increase the sparse knowledge of long-term Southern Hemisphere (SH) climate variability, we assess an ensemble of 4 transient simulations over the last 500 yr performed with a state-of-the-art atmosphere ocean general circulation model. The model is forced with reconstructions of solar irradiance, greenhouse gas (GHG) and volcanic aerosol concentrations. A 1990 control simulation shows that the model is able to represent the Southern Annular Mode (SAM), and to some extent the South Pacific Dipole (SPD) and the Zonal Wave 3 (ZW3). During the past 500 yr we find that SPD and ZW3 variability remain stable, whereas SAM shows a significant shift towards its positive state during the 20th century. Regional temperatures over South America are strongly influenced by changing both GHG concentrations and volcanic eruptions, whereas precipitation shows no significant response to the varying external forcing. For temperature this stands in contrast to proxy records, suggesting that SH climate is dominated by internal variability rather than external forcing. The underlying dynamics of the temperature changes generally point to a combination of several modes, thus, hampering the possibilities of regional reconstructing the modes from proxy records. The linear imprint of the external forcing is as expected, i.e. a warming for increase in the combined solar and GHG forcing and a cooling after volcanic eruptions. Dynamically, only the increase in SAM with increased combined forcing is simulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waterproofing agents are widely used to protect leather and textiles in both domestic and occupational activities. An outbreak of acute respiratory syndrome following exposure to waterproofing sprays occurred during the winter 2002-2003 in Switzerland. About 180 cases were reported by the Swiss Toxicological Information Centre between October 2002 and March 2003, whereas fewer than 10 cases per year had been recorded previously. The reported cases involved three brands of sprays containing a common waterproofing mixture, that had undergone a formulation change in the months preceding the outbreak. A retrospective analysis was undertaken in collaboration with the Swiss Toxicological Information Centre and the Swiss Registries for Interstitial and Orphan Lung Diseases to clarify the circumstances and possible causes of the observed health effects. Individual exposure data were generated with questionnaires and experimental emission measurements. The collected data was used to conduct numeric simulation for 102 cases of exposure. A classical two-zone model was used to assess the aerosol dispersion in the near- and far-field during spraying. The resulting assessed dose and exposure levels obtained were spread on large scales, of several orders of magnitude. No dose-response relationship was found between exposure indicators and health effects indicators (perceived severity and clinical indicators). Weak relationships were found between unspecific inflammatory response indicators (leukocytes, C-reactive protein) and the maximal exposure concentration. The results obtained disclose a high interindividual response variability and suggest that some indirect mechanism(s) predominates in the respiratory disease occurrence. Furthermore, no threshold could be found to define a safe level of exposure. These findings suggest that the improvement of environmental exposure conditions during spraying alone does not constitute a sufficient measure to prevent future outbreaks of waterproofing spray toxicity. More efficient preventive measures are needed prior to the marketing and distribution of new waterproofing agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We combined two techniques, radiolabeled aerosol inhalation delivery and induced sputum, to examine in vivo the time course of particle uptake by airway macrophages in 10 healthy volunteers. On three separate visits, induced sputum was obtained 40, 100, and 160 min after inhalation of radiolabeled sulfur colloid (SC) aerosol (Tc99 m-SC, 0.2 microm colloid size delivered in 6-microm droplets). On a fourth visit (control) with no SC inhalation, induced sputum was obtained and SC particles were incubated (37 degrees C) in vitro with sputum cells for 40, 100, and 160 min (matching the times associated with in vivo sampling). Total and differential cell counts were recorded for each sputum sample. Compared with 40 min (6 +/- 3%), uptake in vivo was significantly elevated at 100 (31 +/- 5%) and 160 min (27 +/- 4%); both were strongly associated with the number of airway macrophages (R = 0.8 and 0.7, respectively); and the number and proportion of macrophages at 40 min were significantly (P < 0.05) elevated compared with control (1,248 +/- 256 versus 555 +/- 114 cells/mg; 76 +/- 6% versus 60 +/- 5%). Uptake in vitro increased in a linear fashion over time and was maximal at 160 min (40 min, 12 +/- 2%; 100 min, 16 +/- 4%; 160 min, 24 +/- 6%). These data suggest that airway surface macrophages in healthy subjects rapidly engulf insoluble particles. Further, macrophage recruitment and phagocytosis-modifying agents are factors in vivo that likely affect particle uptake and its time course.