65 resultados para Salt-stimulated Lipase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erratum for Reduced IFNλ4 activity is associated with improved HCV clearance and reduced expression of interferon-stimulated genes. [Nat Commun. 2014]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Intravenous fluids are commonly prescribed in childhood. 0.9 % saline is the most-used fluid in pediatrics as resuscitation or maintenance solution. Experimental studies and observations in adults suggest that 0.9 % saline is a poor candidate for fluid resuscitation. Although anesthesiologists, intensive care specialists, perioperative physicians and nephrologists have been the most active in this debate, this issue deserves some physiopathological considerations also among pediatricians. RESULTS As compared with so-called "balanced" salt crystalloids such as lactated Ringer, administration of large volumes of 0.9 % saline has been associated with following deleterious effects: tendency to hyperchloremic metabolic acidosis (called dilution acidosis); acute kidney injury with reduced urine output and salt retention; damaged vascular permeability and stiffness, increase in proinflammatory mediators; detrimental effect on coagulation with tendency to blood loss; detrimental gastrointestinal perfusion and function; possible uneasiness at the bedside resulting in unnecessary administration of more fluids. Nevertheless, there is no firm evidence that these adverse effects are clinically relevant. CONCLUSIONS Intravenous fluid therapy is a medicine like insulin, chemotherapy or antibiotics. Prescribing fluids should fit the child's history and condition, consider the right dose at the right rate as well as the electrolyte levels and other laboratory variables. It is unlikely that a single type of fluid will be suitable for all pediatric patients. "Balanced" salt crystalloids, although more expensive, should be preferred for volume resuscitation, maintenance and perioperatively. Lactated Ringer appears unsuitable for patients at risk for brain edema and for those with overt or latent chloride-deficiency. Finally, in pediatrics there is a need for new fluids to be developed on the basis of a better understanding of the physiology and to be tested in well-designed trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The aetiology of hyposalivation in haematopoietic stem cell transplantation (HSCT) recipients is not fully understood. This study examined the effects of treatment-related aetiological factors, particularly medications, on stimulated salivary flow in HSCT recipients. SUBJECTS AND METHODS Adult HSCT recipients (N = 118, 66 males, 27 autologous and 91 allogeneic transplants) were examined. Stimulated whole salivary flow rates (SWSFR) were measured before HSCT and at 6 and 12 months post-HSCT. Linear regression models were used to analyse the associations of medications and transplant-related factors with salivary flow rates, which were compared to salivary flow rates of generally healthy controls (N = 247). RESULTS The SWSFR of recipients were lower pre-HSCT (mean ± standard deviation, 0.88 ± 0.56 ml/min; P < 0.001), 6 months post-HSCT (0.84 ± 0.61; P < 0.001) and 12 months post-HSCT (1.08 ± 0.67; P = 0.005) than the SWSFR of controls (1.31 ± 0.65). In addition, hyposalivation (<0.7 ml/min) was more frequent among HSCT recipients pre-HSCT (P < 0.001), 6 months post-HSCT (P < 0.001) and 12 months post-HSCT (P = 0.01) than among controls. The SWSFR was observed to improve over time being significantly higher 12 months post-HSCT compared to pre-HSCT (P < 0.001). The observed decrease of salivary flow could not be explained by the examined transplant-related factors and medications. CONCLUSIONS Decreased stimulated salivary flow rates could not be explained by the examined factors alone; these findings indicate that hyposalivation in HSCT recipients exhibits a multifactorial aetiology. CLINICAL RELEVANCE All HSCT recipients should be considered to be at high risk of hyposalivation and consequent oral diseases, and they should be treated accordingly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldosterone is an important factor supporting placental growth and fetal development. Recently, expression of placental growth factor (PlGF) has been observed in response to aldosterone exposure in different models of atherosclerosis. Thus, we hypothesized that aldosterone up-regulates growth-adaptive angiogenesis in pregnancy, via increased placental PlGF expression. We followed normotensive pregnant women (n = 24) throughout pregnancy and confirmed these results in a second independent first trimester cohort (n = 36). Urinary tetrahydroaldosterone was measured by gas chromatography-mass spectrometry and corrected for creatinine. Circulating PlGF concentrations were determined by ELISA. Additionally, cultured cell lines, adrenocortical H295R and choriocarcinoma BeWo cells, as well as primary human third trimester trophoblasts were tested in vitro. PlGF serum concentrations positively correlated with urinary tetrahydroaldosterone corrected for creatinine in these two independent cohorts. This observation was not due to PlGF, which did not induce aldosterone production in cultured H295R cells. On the other hand, PlGF expression was specifically enhanced by aldosterone in the presence of forskolin (p < 0.01) in trophoblasts. A pronounced stimulation of PlGF expression was observed with reduced glucose concentrations simulating starvation (p < 0.001). In conclusion, aldosterone stimulates placental PlGF production, enhancing its availability during human pregnancy, a response amplified by reduced glucose supply. Given the crucial role of PlGF in maintaining a healthy pregnancy, these data support a key role of aldosterone for a healthy pregnancy outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making plants resistant to salty environments would be a boon for developing countries where poor land management has rendered large areas of arable land unfit for crop production. In a Perspective, Frommer and colleagues discuss how genetic engineering can be used to confer salt tolerance on plants ( see Apse et al.) and explore the implications of this feat for improving crop production in developing countries.