72 resultados para STOMATAL CONDUCTANCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The charge transport properties of a catechol-type dithiol-terminated oligo-phenylene-ethynylene was investigated by cyclic voltammetry (CV) and by the scanning tunnelling microscopy break junction technique (STM-BJ). Single molecule charge transport experiments demonstrated the existence of high and low conductance regions. The junction conductance is rather weakly dependent on the redox state of the bridging molecule. However, a distinct dependence of junction formation probability and of relative stretching distances of the catechol- and quinone-type molecular junctions is observed. Substitution of the central catechol ring with alkoxy-moieties and the combination with a topological analysis of possible π-electron pathways through the respective molecular skeletons lead to a working hypothesis, which could rationalize the experimentally observed conductance characteristics of the redox-active nanojunctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human embryonic kidney cells 293 (HEK293) are widely used as cellular heterologous expression systems to study transfected ion channels. This work characterizes the endogenous expression of TRPM4 channels in HEK293 cells. TRPM4 is an intracellular Ca(2+)-activated non-selective cationic channel expressed in many cell types. Western blot analyses have revealed the endogenous expression of TRPM4. Single channel 22pS conductance with a linear current-voltage relationship was observed using the inside-out patch clamp configuration in the presence of intracellular Ca(2+). The channels were permeable to the monovalent cations Na(+) and K(+), but not to Ca(2+). The open probability was voltage-dependent, being higher at positive potentials. Using the whole-cell patch clamp "ruptured patch" configuration, the amplitude of the intracellular Ca(2+)-activated macroscopic current was dependent on time after patch rupture. Initial transient activation followed by a steady-increase reaching a plateau phase was observed. Biophysical analyses of the macroscopic current showed common properties with those from HEK293 cells stably transfected with human TRPM4b, with the exception of current time course and Ca(2+) sensitivity. The endogenous macroscopic current reached the plateau faster and required 61.9±3.5μM Ca(2+) to be half-maximally activated versus 84.2±1.5μM for the transfected current. The pharmacological properties, however, were similar in both conditions. One hundred μM of flufenamic acid and 9-phenanthrol strongly inhibited the endogenous current. Altogether, the data demonstrate the expression of endogenous TRMP4 channels in HEK293 cells. This observation should be taken into account when using this cell line to study TRPM4 or other types of Ca(2+)-activated channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Myotonia congenita (MC) is caused by congenital defects in the muscle chloride channel CLC-1. This study used muscle velocity recovery cycles (MVRCs) to investigate how membrane function is affected. Methods: MVRCs and responses to repetitive stimulation were compared between 18 patients with genetically confirmed MC (13 recessive, 7 dominant) and 30 age-matched normal controls. Results: MC patients exhibited increased early supernormality, but treatment with sodium channel blockers prevented this. After multiple conditioning stimuli, late supernormality was enhanced in all MC patients, indicating delayed repolarization. These abnormalities were similar between the MC subtypes, but recessive patients showed a greater drop in amplitude during repetitive stimulation. Discussion: MVRCs indicate that chloride conductance only becomes important when muscle fibers are depolarized. The differential responses to repetitive stimulation suggest that in dominant MC the affected chloride channels are activated by strong depolarization, consistent with a positive shift of the CLC-1 activation curve. © 2013 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prospective memory involves the self-initiated retrieval of an intention upon an appropriate retrieval cue. Cue identification can be considered as an orienting reaction and may thus trigger a psychophysiological response. Here we present two experiments in which skin conductance responses (SCRs) elicited by prospective memory cues were compared to SCRs elicited by aversive stimuli to test whether a single prospective memory cue triggers a similar SCR as an aversive stimulus. In Experiment 2 we also assessed whether cue specificity had a differential influence on prospective memory performance and on SCRs. We found that detecting a single prospective memory cue is as likely to elicit a SCR as an aversive stimulus. Missed prospective memory cues also elicited SCRs. On a behavioural level, specific intentions led to better prospective memory performance. However, on a psychophysiological level specificity had no influence. More generally, the results indicate reliable SCRs for prospective memory cues and point to psychophysiological measures as valuable approach, which offers a new way to study one-off prospective memory tasks. Moreover, the findings are consistent with a theory that posits multiple prospective memory retrieval stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tree water deficit estimated by measuring water-related changes in stem radius (DeltaW) was compared with tree water deficit estimated from the output of a simple, physiologically reasonable model (DeltaW(E)), with soil water potential (Psi(soil)) and atmospheric vapor pressure deficit (VPD) as inputs. Values of DeltaW were determined by monitoring stem radius changes with dendrometers and detrending the results for growth, We followed changes in DeltaW and DeltaW(E) in Pinus sylvestris L. and Quercus pubescens Willd. over 2 years at a dry site (2001-2002; Salgesch, Wallis) and in Picea abies (L.) Karst. for 1 year at a wet site (1998; Davos, Graubuenden) in the Swiss Alps. The seasonal courses of DeltaW in deciduous species and in conifers at the same site were similar and could be largely explained by variation in DeltaW(E). This finding strongly suggests that DeltaW, despite the known species-specific differences in stomatal response to microclimate, is mainly explained by a combination of atmospheric and soil conditions. Consequently, we concluded that trees are unable to maintain any particular DeltaW. Either Psi(soil) or VPD alone provided poorer estimates of AWthan a model incorporating both factors. As a first approximation of DeltaW(E), Psi(soil) can be weighted so that the negative mean Psi(soil) reaches 65 to 75% of the positive mean daytime VPD over a season (Q. pubescens: similar to65%, P abies: similar to70%, P sylvestris: similar to75%). The differences in DeltaW among species can be partially explained by a different weighting of Psi(soil) against VPD. The DeltaW of P. sylvestris was more dependent on Psi(soil) than that of Q. pubescens, but less than that of P. abies, and was less dependent on VPD than that of P. abies and Q. pubescens. The model worked well for P. abies at the wet site and for Q. pubescens and P. sylvestris at the dry site, and may be useful for estimating water deficit in other tree species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Downbeat nystagmus (DBN) is the most frequent form of acquired persisting fixation nystagmus with different symptoms such as unsteadiness of gait, postural instability, and blurred vision with reduced visual acuity (VA) and oscillopsia. However, different symptomatic therapeutic principles are required, such as 3,4-diaminopyridine and 4-aminopyridine, that effectively suppress DBN. Chlorzoxazone (CHZ) is a nonselective activator of small conductance calcium-activated potassium (SK) channels that modifies the activity of cerebellar Purkinje cells. We evaluated the effects of this agent on DBN in an observational proof-of-concept pilot study. Methods: Ten patients received CHZ 500 mg 3 times a day for 1 or 2 weeks. Slow-phase velocity of DBN, VA, postural sway, and the drug's side effects were evaluated. Recordings were conducted at baseline, 90 minutes after first administration, and after 1 or 2 weeks. Results: Mean slow-phase velocity significantly decreased from a baseline of 2.74°/s ± 2.00 to 2.29°/s ± 2.12 (mean ± SD) 90 minutes after first administration and to 2.04°/s ± 2.24 (p < 0.001; post hoc both p = 0.024) after long-term treatment. VA significantly increased and postural sway in posturography showed a tendency to decrease on medication. Fifty percent of patients did not report any side effects. The most common reported side effect was abdominal discomfort and dizziness. Conclusions: The treatment with the SK-channel activator CHZ is a potentially new therapeutic agent for the symptomatic treatment of DBN. Classification of evidence: This study provides Class IV evidence that CHZ 500 mg 3 times a day may improve eye movements and visual fixation in patients with DBN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of initial sample distribution on separation and focusing of analytes in a pH 3–11 gradient formed by 101 biprotic carrier ampholytes under concomitant electroosmotic displacement was studied by dynamic high-resolution computer simulation. Data obtained with application of the analytes mixed with the carrier ampholytes (as is customarily done), as a short zone within the initial carrier ampholyte zone, sandwiched between zones of carrier ampholytes, or introduced before or after the initial carrier ampholyte zone were compared. With sampling as a short zone within or adjacent to the carrier ampholytes, separation and focusing of analytes is shown to proceed as a cationic, anionic, or mixed process and separation of the analytes is predicted to be much faster than the separation of the carrier components. Thus, after the initial separation, analytes continue to separate and eventually reach their focusing locations. This is different to the double-peak approach to equilibrium that takes place when analytes and carrier ampholytes are applied as a homogenous mixture. Simulation data reveal that sample application between two zones of carrier ampholytes results in the formation of a pH gradient disturbance as the concentration of the carrier ampholytes within the fluid element initially occupied by the sample will be lower compared to the other parts of the gradient. As a consequence thereof, the properties of this region are sample matrix dependent, the pH gradient is flatter, and the region is likely to represent a conductance gap (hot spot). Simulation data suggest that sample placed at the anodic side or at the anodic end of the initial carrier ampholyte zone are the favorable configurations for capillary isoelectric focusing with electroosmotic zone mobilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

User comfort during simulated driving is of key importance, since reduced comfort can confound the experiment and increase dropout rates. A common comfort-affecting factor is simulator-related transient adverse health effect (SHE). In this study, we propose and evaluate methods to adapt a virtual driving scene to reduce SHEs. In contrast to the manufacturer-provided high-sensory conflict scene (high-SCS), we developed a low-sensory conflict scene (low-SCS). Twenty young, healthy participants drove in both the high-SCS and the low-SCS scene for 10 min on two different days (same time of day, randomized order). Before and after driving, participants rated SHEs by completing the Simulator Sickness Questionnaire (SSQ). During driving, several physiological parameters were recorded. After driving in the high-SCS, the SSQ score increased in average by 129.4 (122.9 %, p = 0.002) compared to an increase of 5.0 (3.4 %, p = 0.878) after driving in the low-SCS. In the low-SCS, skin conductance decreased by 13.8 % (p < 0.01) and saccade amplitudes increased by 16.1 % (p < 0.01). Results show that the investigated methods reduce SHEs in a younger population, and the low-SCS is well accepted by the users. We expect that these measures will improve user comfort.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most previous neurophysiological studies evoked emotions by presenting visual stimuli. Models of the emotion circuits in the brain have for the most part ignored emotions arising from musical stimuli. To our knowledge, this is the first emotion brain study which examined the influence of visual and musical stimuli on brain processing. Highly arousing pictures of the International Affective Picture System and classical musical excerpts were chosen to evoke the three basic emotions of happiness, sadness and fear. The emotional stimuli modalities were presented for 70 s either alone or combined (congruent) in a counterbalanced and random order. Electroencephalogram (EEG) Alpha-Power-Density, which is inversely related to neural electrical activity, in 30 scalp electrodes from 24 right-handed healthy female subjects, was recorded. In addition, heart rate (HR), skin conductance responses (SCR), respiration, temperature and psychometrical ratings were collected. Results showed that the experienced quality of the presented emotions was most accurate in the combined conditions, intermediate in the picture conditions and lowest in the sound conditions. Furthermore, both the psychometrical ratings and the physiological involvement measurements (SCR, HR, Respiration) were significantly increased in the combined and sound conditions compared to the picture conditions. Finally, repeated measures ANOVA revealed the largest Alpha-Power-Density for the sound conditions, intermediate for the picture conditions, and lowest for the combined conditions, indicating the strongest activation in the combined conditions in a distributed emotion and arousal network comprising frontal, temporal, parietal and occipital neural structures. Summing up, these findings demonstrate that music can markedly enhance the emotional experience evoked by affective pictures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using transcranial magnetic stimulation and skin conductance responses, we sought to clarify if, and to what extent, emotional experiences of different valences and intensity activate the hand-motor system and the associated corticospinal tract. For that purpose, we applied a newly developed method to evoke strong emotional experiences by the simultaneous presentation of musical and pictorial stimuli of congruent emotional valence. We uncovered enhanced motor-evoked potentials, irrespective of valence, during the simultaneous presentation of emotional music and picture stimuli (Combined conditions) compared with the single presentation of the two modalities (Picture/Music conditions). In contrast, vegetative arousal was enhanced during both the Combined and Music conditions, compared with the Picture conditions, again irrespective of emotional valence. These findings strongly indicate that arousal is a necessary, but not sufficient, prerequisite for triggering the motor system of the brain. We offer a potential explanation for this discrepant, but intriguing, finding in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac dysfunction is frequently observed in patients with cirrhosis, and has long been linked to the direct toxic effect of alcohol. Cirrhotic cardiomyopathy (CCM) has recently been identified as an entity regardless of the cirrhosis etiology. Increased cardiac output due to hyperdynamic circulation is a pathophysiological hallmark of the disease. The underlying mechanisms involved in pathogenesis of CCM are complex and involve various neurohumoral and cellular pathways, including the impaired β-receptor and calcium signaling, altered cardiomyocyte membrane physiology, elevated sympathetic nervous tone and increased activity of vasodilatory pathways predominantly through the actions of nitric oxide, carbon monoxide and endocannabinoids. The main clinical features of CCM include attenuated systolic contractility in response to physiologic or pharmacologic strain, diastolic dysfunction, electrical conductance abnormalities and chronotropic incompetence. Particularly the diastolic dysfunction with impaired ventricular relaxation and ventricular filling is a prominent feature of CCM. The underlying mechanism of diastolic dysfunction in cirrhosis is likely due to the increased myocardial wall stiffness caused by myocardial hypertrophy, fibrosis and subendothelial edema, subsequently resulting in high filling pressures of the left ventricle and atrium. Currently, no specific treatment exists for CCM. The liver transplantation is the only established effective therapy for patients with end-stage liver disease and associated cardiac failure. Liver transplantation has been shown to reverse systolic and diastolic dysfunction and the prolonged QT interval after transplantation. Here, we review the pathophysiological basis and clinical features of cirrhotic cardiomyopathy, and discuss currently available limited therapeutic options.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a novel strategy for the regulation of charge transport through single molecule junctions via the combination of external stimuli of electrode potential, internal modulation of molecular structures, and optimization of anchoring groups. We have designed redox-active benzodifuran (BDF) compounds as functional electronic units to fabricate metal–molecule–metal (m–M–m) junction devices by scanning tunneling microscopy (STM) and mechanically controllable break junctions (MCBJ). The conductance of thiol-terminated BDF can be tuned by changing the electrode potentials showing clearly an off/on/off single molecule redox switching effect. To optimize the response, a BDF molecule tailored with carbodithioate (−CS2–) anchoring groups was synthesized. Our studies show that replacement of thiol by carbodithioate not only enhances the junction conductance but also substantially improves the switching effect by enhancing the on/off ratio from 2.5 to 8.