143 resultados para SEPSIS
Resumo:
Klebsiella pneumoniae of sequence type (ST) 11 is a hyper-epidemic nosocomial clone spreading worldwide among humans and also emerging in pets. In this report, we describe a clinical case of fatal sepsis due to this multidrug-resistant (MDR) pathogen in a Eurasian beaver. The isolate showed resistance to six different classes of antimicrobials including third generation cephalosporins and fluoroquinolones. This is the first report describing the detection of a MDR K. pneumoniae ST11 in a free-ranging animal. Our finding highlights the potential for environmental dissemination of hyper-epidemic clones of K. pneumoniae and possible spread in wildlife and cause epizootics.
Resumo:
BACKGROUND Sepsis continues to be a major cause of death, disability, and health-care expenditure worldwide. Despite evidence suggesting that host genetics can influence sepsis outcomes, no specific loci have yet been convincingly replicated. The aim of this study was to identify genetic variants that influence sepsis survival. METHODS We did a genome-wide association study in three independent cohorts of white adult patients admitted to intensive care units with sepsis, severe sepsis, or septic shock (as defined by the International Consensus Criteria) due to pneumonia or intra-abdominal infection (cohorts 1-3, n=2534 patients). The primary outcome was 28 day survival. Results for the cohort of patients with sepsis due to pneumonia were combined in a meta-analysis of 1553 patients from all three cohorts, of whom 359 died within 28 days of admission to the intensive-care unit. The most significantly associated single nucleotide polymorphisms (SNPs) were genotyped in a further 538 white patients with sepsis due to pneumonia (cohort 4), of whom 106 died. FINDINGS In the genome-wide meta-analysis of three independent pneumonia cohorts (cohorts 1-3), common variants in the FER gene were strongly associated with survival (p=9·7 × 10(-8)). Further genotyping of the top associated SNP (rs4957796) in the additional cohort (cohort 4) resulted in a combined p value of 5·6 × 10(-8) (odds ratio 0·56, 95% CI 0·45-0·69). In a time-to-event analysis, each allele reduced the mortality over 28 days by 44% (hazard ratio for death 0·56, 95% CI 0·45-0·69; likelihood ratio test p=3·4 × 10(-9), after adjustment for age and stratification by cohort). Mortality was 9·5% in patients carrying the CC genotype, 15·2% in those carrying the TC genotype, and 25·3% in those carrying the TT genotype. No significant genetic associations were identified when patients with sepsis due to pneumonia and intra-abdominal infection were combined. INTERPRETATION We have identified common variants in the FER gene that associate with a reduced risk of death from sepsis due to pneumonia. The FER gene and associated molecular pathways are potential novel targets for therapy or prevention and candidates for the development of biomarkers for risk stratification. FUNDING European Commission and the Wellcome Trust.
Resumo:
BACKGROUND Sepsis is an increasingly common condition, which continues to be associated with unacceptably high mortality. A large number of association studies have investigated susceptibility to, or mortality from, sepsis for variants in the functionally important immune-related gene MBL2. These studies have largely been underpowered and contradictory. METHODS We genotyped and analyzed 4 important MBL2 single nucleotide polymorphisms (SNPs; rs5030737, rs1800450, rs1800451, and rs7096206) in 1839 European community-acquired pneumonia (CAP) and peritonitis sepsis cases, and 477 controls from the United Kingdom. We analyzed the following predefined subgroups and outcomes: 28-day and 6 month mortality from sepsis due to CAP or peritonitis combined, 28-day mortality from CAP sepsis, peritonitis sepsis, pneumococcal sepsis or sepsis in younger patients, and susceptibility to CAP sepsis or pneumococcal sepsis in the United Kingdom. RESULTS There were no significant associations (all P-values were greater than .05 after correction for multiple testing) between MBL2 genotypes and any of our predefined analyses. CONCLUSIONS In this large, well-defined cohort of immune competent adult patients, no associations between MBL2 genotype and sepsis susceptibility or outcome were identified.
Resumo:
PURPOSE To quantify the coinciding improvement in the clinical diagnosis of sepsis, its documentation in the electronic health records, and subsequent medical coding of sepsis for billing purposes in recent years. METHODS We examined 98,267 hospitalizations in 66,208 patients who met systemic inflammatory response syndrome criteria at a tertiary care center from 2008 to 2012. We used g-computation to estimate the causal effect of the year of hospitalization on receiving an International Classification of Diseases, Ninth Revision, Clinical Modification discharge diagnosis code for sepsis by estimating changes in the probability of getting diagnosed and coded for sepsis during the study period. RESULTS When adjusted for demographics, Charlson-Deyo comorbidity index, blood culture frequency per hospitalization, and intensive care unit admission, the causal risk difference for receiving a discharge code for sepsis per 100 hospitalizations with systemic inflammatory response syndrome, had the hospitalization occurred in 2012, was estimated to be 3.9% (95% confidence interval [CI], 3.8%-4.0%), 3.4% (95% CI, 3.3%-3.5%), 2.2% (95% CI, 2.1%-2.3%), and 0.9% (95% CI, 0.8%-1.1%) from 2008 to 2011, respectively. CONCLUSIONS Patients with similar characteristics and risk factors had a higher of probability of getting diagnosed, documented, and coded for sepsis in 2012 than in previous years, which contributed to an apparent increase in sepsis incidence.
Resumo:
BACKGROUND Recent reports using administrative claims data suggest the incidence of community- and hospital-onset sepsis is increasing. Whether this reflects changing epidemiology, more effective diagnostic methods, or changes in physician documentation and medical coding practices is unclear. METHODS We performed a temporal-trend study from 2008 to 2012 using administrative claims data and patient-level clinical data of adult patients admitted to Barnes-Jewish Hospital in St. Louis, Missouri. Temporal-trend and annual percent change were estimated using regression models with autoregressive integrated moving average errors. RESULTS We analyzed 62,261 inpatient admissions during the 5-year study period. 'Any SIRS' (i.e., SIRS on a single calendar day during the hospitalization) and 'multi-day SIRS' (i.e., SIRS on 3 or more calendar days), which both use patient-level data, and medical coding for sepsis (i.e., ICD-9-CM discharge diagnosis codes 995.91, 995.92, or 785.52) were present in 35.3 %, 17.3 %, and 3.3 % of admissions, respectively. The incidence of admissions coded for sepsis increased 9.7 % (95 % CI: 6.1, 13.4) per year, while the patient data-defined events of 'any SIRS' decreased by 1.8 % (95 % CI: -3.2, -0.5) and 'multi-day SIRS' did not change significantly over the study period. Clinically-defined sepsis (defined as SIRS plus bacteremia) and severe sepsis (defined as SIRS plus hypotension and bacteremia) decreased at statistically significant rates of 5.7 % (95 % CI: -9.0, -2.4) and 8.6 % (95 % CI: -4.4, -12.6) annually. All-cause mortality, SIRS mortality, and SIRS and clinically-defined sepsis case fatality did not change significantly during the study period. Sepsis mortality, based on ICD-9-CM codes, however, increased by 8.8 % (95 % CI: 1.9, 16.2) annually. CONCLUSIONS The incidence of sepsis, defined by ICD-9-CM codes, and sepsis mortality increased steadily without a concomitant increase in SIRS or clinically-defined sepsis. Our results highlight the need to develop strategies to integrate clinical patient-level data with administrative data to draw more accurate conclusions about the epidemiology of sepsis.
Resumo:
Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single pro-inflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could well be explained by the widespread gene expression dysregulation known as "genomic storm" in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this "storm". Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some pro-inflammatory molecules, complement components and endogenous "danger" signals. The improved survival in endotoxemia was associated with serum levels of pro-inflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.
Resumo:
BACKGROUND Uncertainty about the presence of infection results in unnecessary and prolonged empiric antibiotic treatment of newborns at risk for early-onset sepsis (EOS). This study evaluates the impact of this uncertainty on the diversity in management. METHODS A web-based survey with questions addressing management of infection risk-adjusted scenarios was performed in Europe, North America, and Australia. Published national guidelines (n=5) were reviewed and compared to the results of the survey. RESULTS 439 Clinicians (68% were neonatologists) from 16 countries completed the survey. In the low-risk scenario, 29% would start antibiotic therapy and 26% would not, both groups without laboratory investigations; 45% would start if laboratory markers were abnormal. In the high-risk scenario, 99% would start antibiotic therapy. In the low-risk scenario, 89% would discontinue antibiotic therapy before 72 hours. In the high-risk scenario, 35% would discontinue therapy before 72 hours, 56% would continue therapy for five to seven days, and 9% for more than 7 days. Laboratory investigations were used in 31% of scenarios for the decision to start, and in 72% for the decision to discontinue antibiotic treatment. National guidelines differ considerably regarding the decision to start in low-risk and regarding the decision to continue therapy in higher risk situations. CONCLUSIONS There is a broad diversity of clinical practice in management of EOS and a lack of agreement between current guidelines. The results of the survey reflect the diversity of national guidelines. Prospective studies regarding management of neonates at risk of EOS with safety endpoints are needed.
Resumo:
Sepsis is an infection-induced systemic inflammatory syndrome, potentially causing organ failure. We previously showed attenuating effects on inflammation, thrombogenicity and haemodynamics by inhibiting the Toll-like receptor co-factor CD14 and complement factor C5 in a porcine Escherichia coli-induced sepsis model. The present study explored the effect on organ inflammation in these pigs. Tissue samples were examined from the combined treatment group (n = 8), the positive (n = 8) and negative (n = 6) control groups after 4h of sepsis. Inflammatory biomarkers were measured using ELISA, multiplex and qPCR analysis. Combined inhibition of C5 and CD14 markedly attenuated IL-1β by 31-66% (P < 0.05) and IL-6 by 54-96% (P < 0.01) in liver, kidney, lung and spleen; IL-8 by 65-100% in kidney, lung, spleen, and heart (P < 0.05) and MCP-1 by 46-69% in liver, kidney, spleen and heart (P < 0.05). Combined inhibition significantly attenuated tissue factor mRNA upregulation in spleen (P < 0.05) and IP-10 mRNA upregulation in four out of five organs. Finally, C5aR mRNA downregulation was prevented in heart and kidney (P < 0.05). Combined inhibition of C5 and CD14 thus markedly attenuated inflammatory responses in all organs examined. The anti-inflammatory effects observed in lung and heart may explain the delayed haemodynamic disturbances observed in septic pigs receiving combined inhibition of C5 and CD14.
Resumo:
Pseudomonas aeruginosa infection in ventilator-associated pneumonia is a serious and often life-threatening complication in intensive care unit patients, and new treatment options are needed. We used B-cell-enriched peripheral blood lymphocytes from a volunteer immunized with a P. aeruginosa O-polysaccharide-toxin A conjugate vaccine to generate human hybridoma cell lines producing monoclonal antibodies specific for individual P. aeruginosa lipopolysaccharide serotypes. The fully human monoclonal antibody secreted by one of these lines, KBPA101, is an IgM/kappa antibody that binds P. aeruginosa of International Antigenic Typing System (IATS) serotype O11 with high avidity (5.81 x 10(7) M(-1) +/- 2.8 x 10(7) M(-1)) without cross-reacting with other serotypes. KBPA101 specifically opsonized the P. aeruginosa of IATS O11 serotype and mediated complement-dependent phagocytosis in vitro by the human monocyte-like cell line HL-60 at a very low concentration (half-maximal phagocytosis at 0.16 ng/ml). In vivo evaluation of KBPA101 demonstrated a dose-response relationship for protection against systemic infections in a murine burn wound sepsis model, where 70 to 100% of animals were protected against lethal challenges with P. aeruginosa at doses as low as 5 microg/animal. Furthermore, a high efficacy of KBPA101 in protection from local respiratory infections in an acute lung infection model in mice was demonstrated. Preclinical toxicology evaluation on human tissue, in rabbits, and in mice did not indicate any toxicity of KBPA101. Based on these preclinical findings, the first human clinical trials have been initiated.
Resumo:
It is well known that the early initiation of a specific antiinfective therapy is crucial to reduce the mortality in severe infection. Procedures culturing pathogens are the diagnostic gold standard in such diseases. However, these methods yield results earliest between 24 to 48 hours. Therefore, severe infections such as sepsis need to be treated with an empirical antimicrobial therapy, which is ineffective in an unknown fraction of these patients. Today's microbiological point of care tests are pathogen specific and therefore not appropriate for an infection with a variety of possible pathogens. Molecular nucleic acid diagnostics such as polymerase chain reaction (PCR) allow the identification of pathogens and resistances. These methods are used routinely to speed up the analysis of positive blood cultures. The newest PCR based system allows the identification of the 25 most frequent sepsis pathogens by PCR in parallel without previous culture in less than 6 hours. Thereby, these systems might shorten the time of possibly insufficient antiinfective therapy. However, these extensive tools are not suitable as point of care diagnostics. Miniaturization and automating of the nucleic acid based method is pending, as well as an increase of detectable pathogens and resistance genes by these methods. It is assumed that molecular PCR techniques will have an increasing impact on microbiological diagnostics in the future.
Resumo:
Several studies have shown the presence of liver mitochondrial dysfunction during sepsis. TLR3 recognizes viral double-stranded RNA and host endogenous cellular mRNA released from damaged cells. TLR3 ligand amplifies the systemic hyperinflammatory response observed during sepsis and in sepsis RNA escaping from damaged tissues/cells may serve as an endogenous ligand for TLR3 thereby modulating immune responses. This study addressed the hypothesis that TLR3 might regulate mitochondrial function in cultured human hepatocytes. HepG2 cells were exposed to TLR-3 ligand (dsRNA--polyinosine-polycytidylic acid; Poly I:C) and mitochondrial respiration was measured. Poly I:C induced a reduction in maximal mitochondrial respiration of human hepatocytes which was prevented partially by preincubation with cyclosporine A (a mitochondrial permeability transition pore-opening inhibitor). Poly-I:C induced activation of NF-κB, and the mitochondrial dysfunction was accompanied by caspase-8 but not caspase-3 activation and by no major alterations in cellular or mitochondrial ultrastructure.
Resumo:
Procalcitonin has been well established as an important marker of sepsis and systemic infection. The authors evaluated the diagnostic and predictive value of calcitonin and its prohormone procalcitonin in medullary thyroid cancer.
Resumo:
ABSTRACT : INTRODUCTION : V2-receptor (V2R) stimulation potentially aggravates sepsis-induced vasodilation, fluid accumulation and microvascular thrombosis. Therefore, the present study was performed to determine the effects of a first-line therapy with the selective V2R-antagonist (Propionyl1-D-Tyr(Et)2-Val4-Abu6-Arg8,9)-Vasopressin on cardiopulmonary hemodynamics and organ function vs. the mixed V1aR/V2R-agonist arginine vasopressin (AVP) or placebo in an established ovine model of septic shock. METHODS : After the onset of septic shock, chronically instrumented sheep were randomly assigned to receive first-line treatment with the selective V2R-antagonist (1 g/kg per hour), AVP (0.05 g/kg per hour), or normal saline (placebo, each n = 7). In all groups, open-label norepinephrine was additionally titrated up to 1 g/kg per minute to maintain mean arterial pressure at 70 ± 5 mmHg, if necessary. RESULTS : Compared to AVP- and placebo-treated animals, the selective V2R-antagonist stabilized cardiopulmonary hemodynamics (mean arterial and pulmonary artery pressure, cardiac index) as effectively and increased intravascular volume as suggested by higher cardiac filling pressures. Furthermore, left ventricular stroke work index was higher in the V2R-antagonist group than in the AVP group. Notably, metabolic (pH, base excess, lactate concentrations), liver (transaminases, bilirubin) and renal (creatinine and blood urea nitrogen plasma levels, urinary output, creatinine clearance) dysfunctions were attenuated by the V2R-antagonist when compared with AVP and placebo. The onset of septic shock was associated with an increase in AVP plasma levels as compared to baseline in all groups. Whereas AVP plasma levels remained constant in the placebo group, infusion of AVP increased AVP plasma levels up to 149 ± 21 pg/mL. Notably, treatment with the selective V2R-antagonist led to a significant decrease of AVP plasma levels as compared to shock time (P < 0.001) and to both other groups (P < 0.05 vs. placebo; P < 0.001 vs. AVP). Immunohistochemical analyses of lung tissue revealed higher hemeoxygenase-1 (vs. placebo) and lower 3-nitrotyrosine concentrations (vs. AVP) in the V2R-antagonist group. In addition, the selective V2R-antagonist slightly prolonged survival (14 ± 1 hour) when compared to AVP (11 ± 1 hour, P = 0.007) and placebo (11 ± 1 hour, P = 0.025). CONCLUSIONS : Selective V2R-antagonism may represent an innovative therapeutic approach to attenuate multiple organ dysfunction in early septic shock.
Resumo:
Reperfusion of an organ following prolonged ischemia instigates the pro-inflammatory and pro-coagulant response of ischemia / reperfusion (IR) injury. IR injury is a wide-spread pathology, observed in many clinically relevant situations, including myocardial infarction, stroke, organ transplantation, sepsis and shock, and cardiovascular surgery on cardiopulmonary bypass. Activation of the classical, alternative, and lectin complement pathways and the generation of the anaphylatoxins C3a and C5a lead to recruitment of polymorphonuclear leukocytes, generation of radical oxygen species, up-regulation of adhesion molecules on the endothelium and platelets, and induction of cytokine release. Generalized or pathway-specific complement inhibition using protein-based drugs or low-molecular-weight inhibitors has been shown to significantly reduce tissue injury and improve outcome in numerous in-vitro, ex-vivo, and in-vivo models. Despite the obvious benefits in experimental research, only few complement inhibitors, including C1-esterase inhibitor, anti-C5 antibody, and soluble complement receptor 1, have made it into clinical trials of IR injury. The results are mixed, and the next objectives should be to combine knowledge and experience obtained in the past from animal models and channel future work to translate this into clinical trials in surgical and interventional reperfusion therapy as well as organ transplantation.
Resumo:
Insufficient cardiac preload and impaired contractility are frequent in early sepsis. We explored the effects of acute cardiac preload reduction and dobutamine on hepatic arterial (Qha) and portal venous (Qpv) blood flows during endotoxin infusion. We hypothesized that the hepatic arterial buffer response (HABR) is absent during preload reduction and reduced by dobutamine. In anesthetized pigs, endotoxin or vehicle (n = 12, each) was randomly infused for 18 h. HABR was tested sequentially by constricting superior mesenteric artery (SMA) or inferior vena cava (IVC). Afterward, dobutamine at 2.5, 5.0, and 10.0 μg/kg per minute or another vehicle (n = 6, each) was randomly administered in endotoxemic and control animals, and SMA was constricted during each dose. Systemic (cardiac output, thermodilution) and carotid, splanchnic, and renal blood flows (ultrasound Doppler) and blood pressures were measured before and during administration of each dobutamine dose. HABR was expressed as hepatic arterial pressure/flow ratio. Compared with controls, 18 h of endotoxin infusion was associated with decreased mean arterial blood pressure [49 ± 11 mmHg vs. 58 ± 8 mmHg (mean ± SD); P = 0.034], decreased renal blood flow, metabolic acidosis, and impaired HABR during SMA constriction [0.32 (0.18-1.32) mmHg/ml vs. 0.22 (0.08-0.60) mmHg/ml; P = 0.043]. IVC constriction resulted in decreased Qpv in both groups; whereas Qha remained unchanged in controls, it decreased after 18 h of endotoxemia (P = 0.031; constriction-time-group interaction). One control and four endotoxemic animals died during the subsequent 6 h. The maximal increase of cardiac output during dobutamine infusion was 47% (22-134%) in controls vs. 53% (37-85%) in endotoxemic animals. The maximal Qpv increase was significant only in controls [24% (12-47%) of baseline (P = 0.043) vs. 17% (-7-32%) in endotoxemia (P = 0.109)]. Dobutamine influenced neither Qha nor HABR. Our data suggest that acute cardiac preload reduction is associated with preferential hepatic arterial perfusion initially but not after established endotoxemia. Dobutamine had no effect on the HABR.